首页|基于Mobile-UNet的葫芦科接穗苗子叶图像分割方法

基于Mobile-UNet的葫芦科接穗苗子叶图像分割方法

扫码查看
农业嫁接栽培中,通常要保证嫁接后叶片方向与底部的砧木叶片成十字姿态.为了满足自动嫁接机实时准确分割接穗叶片进而找出子叶特征参数,提出一种基于改进UNet的轻量化分割网络.利用MobileNetV2主干作为UNet编码部分的特征提取主干网络,在加强特征提取层中使用Ghost模块实现所有双重卷积操作,在提高网络精度的同时减少网络参数和计算量.实验结果表明,Mobile-UNet模型相比原始模型在MIoU、Precision、Recall和Dice系数等指标上分别提高了 5.69%、1.32%、4.73%和3.12%,模型的计算量和参数量分别下降了 27.4%和35.3%,模型参数体积得到了有效压缩.此外,该模型与SegNet、DeepLabV3+经典语义分割模型相比,也具有分割精度高、参数量更小等优点,可部署于自动嫁接机系统,实现对夹持机构上的接穗子叶分割.
Image Segmentation Method of Cucurbitaceae Scion Seedling Cotyledons Based on Mobile-UNet
In agricultural grafting cultivation,it is usually necessary to ensure that the scion leaves and rootstock leaves are cross-shaped af-ter grafting.In order to enable the automatic grafting machine to accurately segment the scion leaves in real time and find out the characteristic parameters of the cotyledons,a lightweight segmentation method based on improved UNet is proposed,Using the MobileNetV2 backbone as the feature extraction backbone,the Ghost Module is used to implement double convolution operations in the enhanced feature extraction lay-er,which improves network accuracy while reducing network parameters and calculations.The experimental results show that compared with the original model,the Mobile-UNet model has increased by 5.69%,1.32%,4.73%and 3.12%in indicators such as MIoU,Precision,Re-call and Dice coefficients,and the calculation amount and parameter amount of the model have decreased by 27.4%and 35.3%.In addition,compared with SegNet and DeepLabV3+classic segmentation models,this model has higher segmentation accuracy and fewer parameters.It is deployed in the automatic grafting machine system to realize the segmentation of scion cotyledons on the clamping mechanism.

grafting machinescion leafimproved UNetGhost modulesemantic segmentation

赖一波、喻擎苍、方家吉、蒋路茸、吴尧、黄铮

展开 >

浙江理工大学信息科学与工程学院

浙江理工大学计算机科学与技术学院,浙江杭州 310018

嫁接机 接穗叶片 改进UNet Ghost模块 语义分割

2024

软件导刊
湖北省信息学会

软件导刊

影响因子:0.524
ISSN:1672-7800
年,卷(期):2024.23(2)
  • 22