首页|表面肌电信号手势识别算法综述

表面肌电信号手势识别算法综述

扫码查看
随着人工智能技术的发展,深度学习在手势识别方面的识别效果得到显著提升.表面肌电信号是人体肌肉活动时产生的一种电生理信号,由于其非侵入性便于采集,现已作为康复辅具与假肢控制的一种信号来源.在应用表面肌电信号时,需要经过放大滤波等预处理;然后进行特征提取以获取表面肌电信号在时域、频域及时频域的有效信息;最后将这些信息输入机器学习模型中,即可分析人体的相关肌肉运动,进而控制相关器械动作.为此,主要对特征提取及机器学习分类模型部分进行综述,阐述当前基于表面肌电信号手势识别的研究进展与未来发展方向.
A Review of Gesture Recognition Algorithms for Surface Electromyography
With the development of artificial intelligence technology,the recognition effect of deep learning in gesture recognition has been significantly improved.Surface electromyography(SMG)signal is an electrophysiological signal generated during muscle activity in the human body.Due to its non-invasive and easy to collect nature,it has been used as a signal source for rehabilitation aids and prosthetic control.When applying surface electromyography signals,pre-processing such as amplification and filtering is required;Then,feature extraction is carried out to obtain effective information of surface electromyography signals in the time domain,frequency domain,and timely frequency domain;Finally,by inputting this information into the machine learning model,the relevant muscle movements of the human body can be analyzed,and then the movements of the relevant instruments can be controlled.To this end,a review is mainly conducted on the feature extraction and machine learning classification models,elaborating on the current research progress and future development direction of gesture recognition based on surface electromyography signals.

surface electromyography signalfeature extractionmachine learningdeep learninggesture recognition

王硕、程云章

展开 >

上海理工大学上海介入医疗器械工程技术研究中心

上海理工大学健康科学与工程学院,上海 200093

表面肌电信号 特征提取 机器学习 深度学习 手势识别

2024

软件导刊
湖北省信息学会

软件导刊

影响因子:0.524
ISSN:1672-7800
年,卷(期):2024.23(2)
  • 36