首页|基于轻量级卷积神经网络的DDoS攻击检测研究

基于轻量级卷积神经网络的DDoS攻击检测研究

扫码查看
分布式拒绝服务攻击(DDoS)可以攻击、侵入、破坏物联网设备.在COVID-19期间,将大量物联网终端设备用于疫情防控加速了信息交换频率,但过于简单的网络安全防御方式也让网络安全问题成为热议话题.深度学习(DL)已被广泛应用于网络安全领域,用于检测和应对各类安全等级较低的网络环境.针对具备简单结构的智能终端,传统DL模型对计算和内存资源的需求较高,在应对大量流量攻击时,往往需要额外的运行成本.提出一种基于自注意力机制与轻量级卷积神经网络(Self-attention-LCNN)的模型,通过以流为单位,对特定时间段内的数据包提取特征,用于检测和预防复杂网络环境中针对智能终端的DDoS攻击.Self-attention-LCNN模型在CICDDos2019数据集上的准确率为99.21%,将模型部署在树莓派上得到的平均检测率为93%,说明Self-attention-LCNN模型在资源受限的智能终端攻击检测方面具有良好的识别效果.
Research on DDoS Attack Detection Based on Lightweight Convolutional Neural Networks
Distributed denial of service(DDoS)attacks can attack,intrude,and destroy Internet of Things devices.During the COVID-19 pe-riod,the use of a large number of IoT terminal devices for epidemic prevention and control has accelerated the frequency of information ex-change,and the overly simplistic network security defense method has also made network security issues a hot topic.Deep learning(DL)has been widely used in network security to detect and respond to various network environments with low security levels.For intelligent terminals with simple structures,traditional DL models require high computing and memory resources,and often require additional operating costs when dealing with large traffic attacks.The research proposes a model based on self attention mechanism and lightweight convolutional neural net-works(Self-attention-LCNN),which extracts features from data packets within a given time period on a stream basis to detect and prevent DDoS attacks against intelligent terminals in complex network environments.The accuracy of the Self-attention-LCNN model on the CICDDoS 2019 dataset is 99.21%.Deploying the model on a raspberry pie yielded an average detection rate of 93%,indicating that the Self-attention-LCNN model has a good recognition effect in attack detection on resource-constrained intelligent terminals.

DDoSattack detectionconvolutional neural networklightweightself attention mechanismintelligent terminal

叶彩瑞、徐华、邓在辉

展开 >

武汉纺织大学计算机与人工智能学院,湖北武汉 430200

湖北城市建设职业技术学院信息与设备工程学院,湖北武汉 430205

DDoS 攻击检测 卷积神经网络 轻量级 自注意力机制 智能终端

国家自然科学基金武汉纺织大学校基金

6117009320220609

2024

软件导刊
湖北省信息学会

软件导刊

影响因子:0.524
ISSN:1672-7800
年,卷(期):2024.23(3)
  • 21