首页|一种无创预测血压的改进LightGBM学习方法

一种无创预测血压的改进LightGBM学习方法

扫码查看
为提高无创血压预测模型的准确率,减小个人身体差异对准确率的影响,提出一种基于鲸鱼优化算法(WOA)与轻量级梯度提升机(LightGBM)的无创血压检测模型WOA-LightGBM.该模型首先提取预处理后的光电容积脉搏波、心电信号特征,并结合人体特征组成输入特征矩阵;然后通过核主成分分析法对输入特征矩阵进行降维,减少冗余;最后运用WOA优化LightGBM模型参数.实验结果表明,WOA-LightGBM模型预测的收缩压和舒张压的平均绝对误差均满足美国医疗仪器促进协会制定的标准(±5mmHg),与传统模型相比具有一定优势,且与传统水银血压计测量结果有高度一致性.
An Improved LightGBM Learning Method for Non-invasive Blood Pressure Prediction
To improve the accuracy of non-invasive blood pressure prediction models and reduce the impact of individual body differences on accuracy,a non-invasive blood pressure detection model WOA LightGBM based on Whale Optimization Algorithm(WOA)and Lightweight Gradient Booster(LightGBM)is proposed.The model first extracts the preprocessed features of the photocapacitive product pulse wave and electrocardiogram signal,and combines them with human body features to form an input feature matrix;Then,the input feature matrix is di-mensionally reduced using kernel principal component analysis to reduce redundancy;Finally,WOA is used to optimize the parameters ofthe LightGBM model.The experimental results show that the average absolute error of the WOA LightGBM model in predicting systolic and diastol-ic blood pressure meets the standard set by the American Association for the Advancement of Medical Devices(±5mmHg),which has certain advantages compared to traditional models and high consistency with traditional mercury meters for measuring blood pressure.

non-invasive blood pressure detectionhuman characteristicKPCAWOALightGBM

陈勤达、陈小惠

展开 >

南京邮电大学自动化学院、人工智能学院,江苏南京 210023

无创血压检测 人体特征 核主成分分析法 鲸鱼优化算法 轻量级梯度提升机

2024

软件导刊
湖北省信息学会

软件导刊

影响因子:0.524
ISSN:1672-7800
年,卷(期):2024.23(3)
  • 20