首页|基于改进NSGA-Ⅲ算法的云制造服务组合优化

基于改进NSGA-Ⅲ算法的云制造服务组合优化

扫码查看
为解决云制造环境下复杂制造任务的服务组合问题,促进云制造模式的良性发展,构建综合考虑服务需求方、云制造平台和服务提供方三方利益的多目标服务组合优化模型.基于反向学习机制和多目标种群自适应进化机制改进NSGA-Ⅲ算法,并将该算法应用于多目标服务组合优化模型求解.通过比较NSGA-Ⅲ算法与改进NSGA-Ⅲ算法的各个方向适应度的均值和方差,验证了后者在求解多目标服务组合优化问题上的有效性.
Optimization of Cloud Manufacturing Service Portfolio Based on Improved NSGA-Ⅲ Algorithm
To solve the service composition problem of complex manufacturing tasks in cloud manufacturing environment and promote the healthy development of cloud manufacturing mode,a multi-objective service composition optimization model is constructed that comprehen-sively considers the interests of service demanders,cloud manufacturing platforms,and service providers.Based on the reverse learning mech-anism and multi-objective population adaptive evolution mechanism,the NSGA-Ⅲ algorithm is improved and applied to solve the multi-ob-jective service composition optimization model.By comparing the mean and variance of fitness in various directions of the NSGA-Ⅲ algo-rithm with the improved NSGA-Ⅲ algorithm,the effectiveness of the latter in solving multi-objective service composition optimization prob-lems was verified.

cloud manufacturingmulti objective optimizationreverse learningadaptive evolutionNSGA-Ⅲ

王平、周鑫

展开 >

江苏科技大学经济管理学院

江苏科技大学服务制造模式与信息化研究中心,江苏镇江 212003

云制造 多目标优化 反向学习 自适应进化 NSGA-Ⅲ

国家社会科学基金

22BJY021

2024

软件导刊
湖北省信息学会

软件导刊

影响因子:0.524
ISSN:1672-7800
年,卷(期):2024.23(3)
  • 26