首页|基于改进BM3D的乳腺超声图像去噪算法研究

基于改进BM3D的乳腺超声图像去噪算法研究

扫码查看
低噪声、高对比度的超声图像能极大提高医生对病情诊断的准确率.为解决乳腺超声图像在采集和传输过程中引入散斑噪声而导致图像质量恶化从而影响乳腺癌早期诊断的问题,提出一种基于改进BM3D的乳腺超声图像去噪算法.首先引入基于DBSCAN的超像素分割方法,对原图进行超像素分割得到相应的超像素标签矩阵;然后利用超像素标签矩阵引导BM3D算法中的块匹配过程,一方面可以减少待匹配块的搜索时间,另一方面可以给相似块度量提供辅助信息,进而提高块匹配的准确性;最后改进BM3D算法中的硬阈值滤波,采用自适应噪声参数估计进一步提升去噪效果.实验结果表明,改进BM3D算法的等效视数相较传统BM3D算法提高了1.75%,边缘保持指数提高了2.56%,而算法处理时间却减少了51.26%,说明其是一种兼顾去噪效果与运行时间的实用方法.
Research on Breast Ultrasound Image Denoising Algorithm Based on Improved BM3D
Low noise,high contrast images can greatly improve the accuracy of doctors'diagnosis of disease.In order to solve the problem that speckle noise is introduced into the acquisition and transmission of breast ultrasound images,which leads to the deterioration of image quality and affects the early diagnosis of breast cancer,a denoising algorithm for breast ultrasound images based on improved BM3D is proposed.First-ly,a DBSCAN based superpixel segmentation method is introduced to segment the original image to obtain the corresponding superpixel label matrix;Then,using the super pixel label matrix to guide the block matching process in the BM3D algorithm can reduce the search time of the blocks to be matched,and on the other hand,the super pixel label also provides auxiliary information for similar block metrics,improving the accuracy of block matching;Finally,the hard threshold filtering in the BM3D algorithm is improved,and adaptive noise parameter estimation further improves the denoising effect.Experimental results show that the equivalent number of views of the improved BM3D algorithm is 1.75%higher than that of the traditional BM3D algorithm,and the edge retention index is 2.56%higher,while the processing time of the algorithm is reduced by 51.26%.The improved BM3D algorithm is a practical method that takes into account both noise removal effects and runtime.

image denoisingBM3DDBSCANadaptive filteringbreast ultrasound image

陈雅玲、童莹、何睿清、曹雪虹

展开 >

南京邮电大学通信与信息工程学院,江苏南京 210003

南京工程学院信息与通信工程学院,江苏南京 211167

图像去噪 BM3D DBSCAN 自适应滤波 乳腺超声图像

国家自然科学基金国家自然科学基金

6170320161905108

2024

软件导刊
湖北省信息学会

软件导刊

影响因子:0.524
ISSN:1672-7800
年,卷(期):2024.23(3)
  • 24