首页|快速准确的光流法运动目标检测

快速准确的光流法运动目标检测

扫码查看
使用经典HS光流法对视频图像中的运动目标进行识别与检测时存在环境噪声多、检测效率低等问题.为此,对光流法进行改进.首先设计新的判定方法降低求解光流的迭代次数,减少算法执行时间;然后结合边缘检测等算法设计满足精度约束的算法,降低环境噪声的影响;最后使用GPU分别对光流法和边缘检测算法并行优化,从而进一步提高算法效率.实验结果表明,所提算法在CDNet2014数据集上的检测精度为88.1%e,检测到的运动目标清晰度高.此外,该算法在GPU上的最大加速比为89倍,性能较传统算法有很大提升.
Accurate and Efficient Moving Object Detection with Optical Flow
When using the classic HS optical flow method to recognize and detect moving targets in video images,there are problems such as high environmental noise and low detection efficiency.To this end,improvements were made to the optical flow method.Firstly,design a new judgment method to reduce the number of iterations for solving optical flow and the execution time of the algorithm;Then,combining edge de-tection and other algorithms,design algorithms that meet accuracy constraints to reduce the impact of environmental noise;Finally,GPU was used to optimize the optical flow method and edge detection algorithm in parallel,thereby further improving the efficiency of the algorithm.The experimental results show that the proposed algorithm has a detection accuracy of 88.1%on the CDNet2014 dataset,and the detected moving targets have high clarity.In addition,the maximum acceleration ratio of this algorithm on GPU is 89 times,which greatly improves its perfor-mance compared to traditional algorithms.

optical flowmoving object detectionedge detectionCUDAparallel optimization

王一超、鲁芹、王迎雪、吴孟伟

展开 >

齐鲁工业大学(山东省科学院)计算机科学与技术学部,山东济南 250353

光流法 运动目标检测 边缘检测 CUDA 并行优化

山东省重点研发计划

2020CXGC010102

2024

软件导刊
湖北省信息学会

软件导刊

影响因子:0.524
ISSN:1672-7800
年,卷(期):2024.23(3)
  • 20