首页|钢材表面缺陷检测研究综述

钢材表面缺陷检测研究综述

扫码查看
钢材是工业领域不可或缺的原材料,表面缺陷严重影响钢材质量.传统钢材表面缺陷检测方法精度低、速度慢、劳动强度大,无法满足实际生产需求.近年来深度学习技术发展迅速,其能充分挖掘目标图像底层特征信息,给钢材缺陷检测带来了新的解决方案.综述近年钢材表面缺陷检测方法相关文献,简述传统检测方法的原理及其适用性,分析深度学习检测模型的结构与特点,并对目前该领域存在的一些技术难点进行总结,对未来发展趋势进行展望.
Survey of Steel Surface Defect Detection Research
Steel is an indispensable raw material in the industrial field,and surface defects seriously affect the quality of steel.Traditional steel surface defect detection methods have low accuracy,slow speed,and high labor intensity,which cannot meet actual production needs.In recent years,deep learning technology has developed rapidly,which can fully explore the underlying feature information oftarget images,bringing new solutions to steel defect detection.Summarize the relevant literature on steel surface defect detection methods in recent years,briefly describe the principles and applicability of traditional detection methods,analyze the structure and characteristics of deep learning de-tection models,and summarize some technical difficulties in the current field,and look forward to future development trends.

steelssurface defectstarget detectiondeep learning

宋育斌、孔维宾、陈希、方忠庆

展开 >

盐城工学院信息工程学院

盐城市光纤传感及应用工程技术研究中心,江苏盐城 224051

钢材 表面缺陷 目标检测 深度学习

国家自然科学基金江苏省研究生实践创新计划大学生创新创业训练计划

12001475SJCX22-XZ0332022464

2024

软件导刊
湖北省信息学会

软件导刊

影响因子:0.524
ISSN:1672-7800
年,卷(期):2024.23(3)
  • 39