首页|基于需求密度预测的网约车集约化调度方法

基于需求密度预测的网约车集约化调度方法

扫码查看
为提升网约车接单率和利润率、实现全局供需平衡,提出一种基于需求密度预测的网约车集约化调度方法.首先,根据历史数据设计基于多层混合感知野的深度时空残差感知网络结构,该网络基于需求频度划分历史时空数据,并通过卷积指数线性网络及残差单元对不同时空数据进行差异化处理.结合基于门控机制的融合及求和融合方法动态聚合时间、空间和外部特征,实现了对需求密度的准确预测,从而预估网约车需求密度集群效益.其次,基于网约车经济效益和需求密度集群效益,建立调度数学模型,设计传感邻域限制调度范围,提升搜索效率.将遗传算法与匈牙利算法相结合,提高算法寻优能力,避免基因缺失,通过改进选择和变异算子,增强遗传算法的局部随机搜索能力,规避早熟风险,从而得到网约车与乘客的最佳匹配结果,保证了全局供需平衡和总体盈利能力.最后,基于大规模真实数据集对预测模型的性能和调度算法的有效性进行验证,实验结果表明,预测模型精度可达到97%,调度算法的求解质量可达最优解的99%,可为网约车平台提供调度策略,保障交通系统稳定.
Intensive Scheduling Method of Ride-Sharing Based on Demand Density Prediction
An intense scheduling strategy for online vehicles based on demand density prediction is suggested to increase the order acceptance rate and profitability of these vehicles as well as attain worldwide supply-demand equilibrium.The first step is to design a deep spatiotemporal residual perception network structure based on a multilayer hybrid perception field using historical data.This structure divides historical spatio-temporal data based on demand frequency and separates different types of spatiotemporal data using a convolutional exponential linear network and residual units.Accurate demand density prediction is achieved by combining the fusion and summation fusion methods based on gating mechanisms to dynamically aggregate temporal,spatial,and external variables.This method also predicts the advantage of demand density clustering of online cars.Second,a scheduling mathematical model is developed,and the sensing neighborhood is created to reduce the sched-uling range and increase search efficiency.This is based on the economic benefits and demand density clustering benefits of online cars.To in-crease the search capacity of the algorithm and prevent gene deficiencies,the genetic algorithm is combined with the Hungarian algorithm.Ad-ditionally,the local random search capacity of the genetic algorithm is improved by enhancing the selection and variation operators to reduce the risk of premature maturation and to achieve the best match between online taxi and passenger,which ensures the equilibrium of supply and demand globally and overall profitability.Finally,using sizable real data sets,the performance of the prediction model and the efficiency of the scheduling technique are confirmed.According to the experimental findings,the prediction model's accuracy can reach 97%,and the scheduling algorithm's solution quality can reach 99%of the best possible result,which can be used to develop scheduling plans for online taxi platforms and guarantee the stability of the transportation system.

intelligent transportation systemsvehicle schedulingride-sharing demand density forecastgenetic algorithmHungarian al-gorithmdeep neural network

郭羽含、丁文婧

展开 >

辽宁工程技术大学 软件学院,辽宁 葫芦岛 125105

浙江科技学院 理学院,浙江 杭州 310023

智能交通系统 车辆调度 网约车需求密度预测 遗传算法 匈牙利算法 深度神经网络

国家自然科学基金项目

61404069

2024

软件导刊
湖北省信息学会

软件导刊

影响因子:0.524
ISSN:1672-7800
年,卷(期):2024.23(4)
  • 20