首页|基于特征融合与注意力的服装图像分类算法

基于特征融合与注意力的服装图像分类算法

扫码查看
针对服装图像分类特征信息丰富度低、特征表示能力弱以及分类准确度不高的问题,提出一种基于特征融合与注意力机制的服装图像分类算法.该算法采用卷积神经网络ResNet50作为基础分类网络结构,通过融合多个阶段卷积层提取到的特征以丰富模型提取的特征信息,并在模型中嵌入通道和位置注意力模块以增强特征表示.实验结果表明,所提出的算法在自建数据集和DeepFashion数据集上准确率分别为79.69%和82.22%,分别高于基准模型1.95%和1.76%.由此验证了所提出的算法能够提取到更丰富的服装特征信息,且具有更强的特征表示能力,从而提高了服装图像分类效果.
Clothing Image Classification Algorithm Based on Feature Fusion and Attention
A clothing image classification algorithm based on feature fusion and attention mechanism has been proposed to address the prob-lems of low richness of feature information,weak feature representation ability,and low classification accuracy in clothing image classifica-tion.The algorithm uses the ResNet50 convolutional neural network as the basic classification network structure,enriches the feature informa-tion extracted by the model by fusing features extracted from multiple stages of convolutional layers,and embeds channel and position atten-tion modules in the model to enhance feature representation.Experimental results show that the proposed algorithm achieves an accuracy of 79.69%and 82.22%on self-built datasets and DeepFashion datasets,respectively,which are 1.95%and 1.76%higher than the baseline mod-el.This verifies that the proposed algorithm can extract richer clothing feature information,has stronger feature representation ability,and thus improves the effect of clothing image classification.

clothing image classificationconvolutional neural networkResNet50feature fusionattention mechanism

李涛、张俊杰

展开 >

武汉纺织大学 计算机与人工智能学院,湖北 武汉 430200

服装图像分类 卷积神经网络 ResNet50 特征融合 注意力机制

科技部重点研究专项

2019YFB1706300

2024

软件导刊
湖北省信息学会

软件导刊

影响因子:0.524
ISSN:1672-7800
年,卷(期):2024.23(4)
  • 28