首页|基于改进海鸥优化算法的多场景多障碍无人机三维路径规划

基于改进海鸥优化算法的多场景多障碍无人机三维路径规划

扫码查看
无人机三维路径规划目标为在避开障碍物和满足约束条件的情况下规划出高效且可行的飞行路径.为此,针对无人机路径规划应用的广泛性和计算的复杂性提出一种改进海鸥优化算法(TP-SOA),求解多场景多障碍下无人机的三维路径规划问题.首先引入非线性收敛因子调整海鸥优化算法的迭代进程,使个体能够在算法前期保持较大的随机性,在后期快速收敛;其次在搜索方式上采用莱维飞行机制,扩大局部搜索的有效区域,提高个体跳出局部最优的能力;最后引入个体最优策略,增加个体对历史最优个体位置的学习过程,提高算法的优化性能.仿真实验结果表明,TP-SOA能在复杂的多障碍场景中规划出高质量路径,收敛精度和稳定性相较对照算法更高,表现出较明显的优势.
Multi-Scene and Multi-Obstacle UAV 3D Path Planning Based on Improved Seagull Optimization Algorithm
The goal of UAV 3D path planning is to plan an efficient and feasible flight path while avoiding obstacles and meeting constraint conditions.Therefore,an improved seagull optimization algorithm(TP-SOA)is proposed to solve the three-dimensional path planning prob-lem of unmanned aerial vehicles(UAVs)in multiple scenarios and obstacles,taking into account the widespread application and computation-al complexity of UAV path planning.Firstly,a nonlinear convergence factor is introduced to adjust the iteration process of the seagull optimiza-tion algorithm,allowing individuals to maintain a high degree of randomness in the early stages of the algorithm and converge quickly in the lat-er stages;Secondly,the Levi flight mechanism is adopted in the search method to expand the effective area of local search and improve the in-dividual's ability to jump out of local optima;Finally,an individual optimal strategy is introduced to increase the learning process of individu-als on the historical optimal individual positions and improve the optimization performance of the algorithm.The simulation experiment results show that TP-SOA can plan high-quality paths in complex multi obstacle scenarios,with higher convergence accuracy and stability compared to the control algorithm,demonstrating significant advantages.

seagull optimization algorithmLévy flight mechanismindividual optimal strategy3D path planning

侯平静、刘姜、倪枫、陆劲宇

展开 >

上海理工大学 管理学院,上海 200093

海鸥优化算法 莱维飞行机制 个体最优策略 三维路径规划

2024

软件导刊
湖北省信息学会

软件导刊

影响因子:0.524
ISSN:1672-7800
年,卷(期):2024.23(5)