首页|基于自下而上与自上而下的轨迹知识图谱构建

基于自下而上与自上而下的轨迹知识图谱构建

扫码查看
轨迹作为时间序列数据,蕴含着轨迹点的空间和时间信息,并且路网结构与天气状况作为辅助因素也会对轨迹数据分析产生影响.为了实现多源异构数据的有效组织、融合,以及轨迹数据的分析与挖掘,基于真实的车辆轨迹构建轨迹知识图谱.构建轨迹知识图谱时分别采用自下而上和自上而下的方法,实现轨迹数据和辅助信息的融合.通过两种方法构建的轨迹知识图谱,最终存储于图数据库中,有助于未来对数据的提取与应用.自下而上构建的知识图谱显示出星型结构,自上而下构建的轨迹知识图谱基于4个空间本体,可较好地反映轨迹空间信息和行驶语义.
Trajectory Knowledge Graph Construction from Bottom to Up and Top to Bottom
As time series data,trajectories contain both temporal and spatial information of trajectory points.In addition,the road network structure and weather conditions as auxiliary factors can also have an impact on the analysis of trajectory data.In order to organize and inte-grate these multi-source heterogeneous data to achieve analysis and mining of trajectory data,this article constructs the trajectory knowledge graphs.The bottom-up and top-down methods are adopted to integrate trajectory data and auxiliary data.The trajectory knowledge graph con-structed by the two methods are saved in the graph database,facilitating subsequent data extraction and application.The knowledge graph con-structed from bottom to top is a star shape;while we propose four spatial ontologies to construct the trajectory knowledge graph from top to bot-tom,which can effectively reflect trajectory spatial information and driving semantics.

trajectory dataknowledge graphtrajectory knowledge graphgraph database

王菁菁、姜梦、克亚琳、潘晓

展开 >

石家庄铁道大学 信息科学与技术学院,河北 石家庄 050043

轨迹数据 知识图谱 轨迹知识图谱 图数据库

2024

软件导刊
湖北省信息学会

软件导刊

影响因子:0.524
ISSN:1672-7800
年,卷(期):2024.23(5)