首页|基于多尺度特征融合的遥感影像水体检测

基于多尺度特征融合的遥感影像水体检测

扫码查看
地表水在全球生态环境中发挥着重要作用,因此动态捕捉地球上地表水的分布和范围是必要的.然而,由于地表环境的高度复杂性,现有的地表水体检测方法在适用性和精确度方面存在局限性,特别是在高异质性区域,如城镇、山地和云覆盖区域等.为了提升不同地表环境中不同类型水体的识别精度,提出一种基于多尺度特征融合的遥感影像水体检测方法(MFWD).该方法首先基于深度残差网络模型提取水体和地表的不同级别特征;其次,设计空洞空间金字塔池化(ASPP)模块和通道—空间注意力机制(CSAM)模块充分挖掘高级语义信息,捕获水体的高级特征;最后,利用跨尺度连接融合不同尺度的低级空间细节特征和高级语义信息,获得全面的特征表示,从而有效识别水体.利用Sentinel-2数据进行水体检测实验,结果表明,MFWD方法获得了95.6%的整体识别精度,提高了不同类型水体的识别准确性,改善了对细小水体和高异质性区域水体的检测效果.
Water Body Detection Based on Multi-Scale Feature Fusion for Remote Sensing Images
Surface water plays an important role in the global ecological environment and human life.Dynamically capturing the distribution and extent of surface water on Earth is necessary.However,due to the high complexity of land surface environments,existing surface water body detection methods have limitations in applicability and accuracy,especially in highly heterogeneous regions such as urban areas,moun-tains,and cloud-covered areas.To improve the recognition accuracy of different types of water bodies in different land surface environments,this study proposes a water body detection method for remote sensing images based on multi-scale feature fusion(MFWD).The proposed method first extracts multi-level features of water bodies and land surfaces based on a deep residual network model.Then,an Atrous Spatial Pyramid Pooling(ASPP)module and a Channel-Spatial Attention Mechanism(CSAM)module are designed to fully exploit advanced seman-tic information and capture advanced features of water bodies.Finally,cross-scale connections are utilized to fuse multi-scale low-level spa-tial details and high-level semantic information,obtaining comprehensive feature representations for effective water body recognition.Experi-ments on Sentinel-2 data demonstrate that the proposed MFWD method achieves an overall recognition accuracy of 95.6%,exhibiting im-proved accuracy in identifying different types of water bodies.Moreover,the detection of small-scale water bodies as well as water bodies in highly heterogeneous regions is enhanced.

atrous spatial pyramid poolingattention mechanismmulti-scale feature fusionremote sensing imageswater bodies detection

曾宝秀、董传祥

展开 >

中科卫星(山东)科技集团有限公司,山东 济南 250000

山东科技大学 测绘与空间信息学院,山东 青岛 266590

空洞空间金字塔池化 注意力机制 多尺度特征融合 遥感影像 水体检测

2024

软件导刊
湖北省信息学会

软件导刊

影响因子:0.524
ISSN:1672-7800
年,卷(期):2024.23(5)