首页|基于深度学习的生成式文本摘要综述

基于深度学习的生成式文本摘要综述

扫码查看
随着互联网飞速发展,文本数据呈现指数级增长,为文档管理、文本分类、信息检索等文本处理任务带来了前所未有的挑战.研究人员虽然开发了各种基于深度学习(DL)的生成式摘要(ATS)模型,但大部分最先进的ATS模型均基于DL架构,基于DL的生成式文本摘要领域仍缺乏全面的文献调查.为此,提供了一份基于DL的ATS的全面调查.首先概述了ATS的概念,然后总结了基于DL的ATS的典型模型及其面临的主要问题、处理方法,最后强调ATS任务中的一些开放性挑战,以及当下的热点、难点问题和未来研究趋势,以期帮助研究人员更好地了解该领域的最新进展.
A Survey of Deep Learning-Based Generative Text Summarization
With the rapid development of the Internet,text data has shown exponential growth,bringing unprecedented challenges to text pro-cessing tasks such as document management,text classification,and information retrieval.Although researchers have developed various deep learning(DL)based generative summarization(ATS)models,most of the most advanced ATS models are based on the DL architecture,and there is still a lack of comprehensive literature review in the field of DL based generative text summarization.To this end,a comprehensive sur-vey of DL based ATS was provided.Firstly,the concept of ATS is outlined,followed by a summary of typical models of DL based ATS and their main challenges and solutions.Finally,some open challenges in ATS tasks,as well as current hot and difficult issues and future research trends,are emphasized to help researchers better understand the latest developments in this field and provide guidance and inspiration for fu-ture research.

automatic text summarizationdeep learninggenerative summarizationnatural language processingnatural language genera-tion

陈明轩、肖诗斌、王洪俊

展开 >

北京信息科技大学 计算机学院,北京 100101

拓尔思信息技术股份有限公司,北京 100096

自动文本摘要 深度学习 生成式摘要 自然语言处理 自然语言生成

2024

软件导刊
湖北省信息学会

软件导刊

影响因子:0.524
ISSN:1672-7800
年,卷(期):2024.23(5)