首页|推荐系统中混合难负样本的生成模型

推荐系统中混合难负样本的生成模型

扫码查看
负样本对协同过滤推荐任务影响巨大,高质量的负样本能帮助模型精准描述用户画像.针对现存的假负样本及计算量大的问题,基于难负样本的思想提出一种混合动态负采样模型.首先,通过动态负采样方法和服务推荐模型确定每个用户的负样本范围与序列;其次为每个用户快速采样到大量的难负样本候选项;再次,使用混合思想将采样到的负样本集合装配成一个难负样本,扩大感知域和融入的信息量;最后,引入一种注意力机制指导负样本的融合,以此提升系统稳定性.在Alibaba、Yelp2018和Amazon公开数据集上与基线模型进行的比较实验表明,所提模型在多个评价指标下均优于现有基线模型,证明了模型的有效性.
A Generation Model of Mixed Difficult and Negative Samples in Recommendation System
Negative samples have a significant impact on collaborative filtering recommendation tasks,and high-quality negative samples can help models accurately describe user profiles.A hybrid dynamic negative sampling model is proposed based on the idea of difficult negative samples to address the existing problems of false negative samples and high computational complexity.Firstly,the range and sequence of nega-tive samples for each user are determined through dynamic negative sampling methods and service recommendation models;Then quickly sam-ple a large number of difficult and negative sample candidates for each user;Next,using a hybrid approach,assemble the sampled negative sample set into a difficult negative sample to expand the perceptual domain and incorporate more information;Finally,an attention mecha-nism is introduced to guide the fusion of negative samples,thereby improving system stability.Comparative experiments with baseline models on publicly available datasets in Alibaba,Yelp2018,and Amazon have shown that the proposed model outperforms existing baseline models under multiple evaluation metrics,demonstrating the effectiveness of the model.

collaborative filteringnegative samplinghard negative samplerecommendation systemdynamic negative sampling

马汉达、梁文德

展开 >

江苏大学 计算机科学与通信工程学院,江苏 镇江 212013

协同过滤 负采样 难负样本 推荐系统 动态负采样

2024

软件导刊
湖北省信息学会

软件导刊

影响因子:0.524
ISSN:1672-7800
年,卷(期):2024.23(7)
  • 2