首页|基于通道注意力与光照权重的无监督低照度图像增强

基于通道注意力与光照权重的无监督低照度图像增强

扫码查看
现有部分无监督低照度图像增强方法在增强图像曝光不足的区域时会降低其高光区域亮度,导致增强后的图像出现伪影;单一的TV损失既无法区别照明特征图的细节,还会忽略照明特征图边缘明暗度差异突出的地区,导致光晕现象的产生.为此,提出一种基于通道注意力与光照权重的无监督低照度图像增强方法VARRNet.首先,VARRNet将图像转化为HSV空间,将V空间与Retinex理论结合以避免损失信息;其次,为了防止在亮度增强过程中生成伪影,设计了一个亮度估计网络引入通道注意力ECA分配输入特征图的权重,以恢复曝光不足区域的亮度,并有效保持高光区域的亮度;最后,在亮度估计网络中结合TV损失与光照分量权重来保留增强后特征图的丰富细节信息,消除强边缘处的光晕.在与当前流行的5个低照度图像增强方法进行比较实验发现,VARRNet在亮度增强、细节保留、色彩恢复、伪影抑制和光晕去除等方面均取得了更好的可视化效果.
Unsupervised Low Illumination Image Enhancement Based on Channel Attention and Illumination Weights
Some existing unsupervised low light image enhancement methods may reduce the brightness of highlights in areas with insufficient image exposure,resulting in artifacts in the enhanced image;A single TV loss cannot distinguish the details of the lighting feature map,and it will also ignore areas with prominent differences in brightness at the edges of the lighting feature map,leading to the occurrence of halo phe-nomena.To this end,a unsupervised low light image enhancement method VARRNet based on channel attention and lighting weight is pro-posed.Firstly,VARRNet converts images into HSV space and combines V space with Retinex theory to avoid information loss;Secondly,in order to prevent the generation of artifacts during the brightness enhancement process,a brightness estimation network was designed to intro-duce channel attention ECA to allocate the weights of input feature maps,in order to restore the brightness of underexposed areas and effective-ly maintain the brightness of highlight areas;Finally,in the brightness estimation network,TV loss and lighting component weight are com-bined to preserve the rich detail information of the enhanced feature map and eliminate halos at strong edges.Compared with five popular low light image enhancement methods,VARRNet achieved better visualization results in brightness enhancement,detail preservation,color resto-ration,artifact suppression,and halo removal.

unsupervised learningRetinexlow illumination image enhancementchannel attentionlighting smoothness

杨猛、杜晓刚、张学军、孙浩轩

展开 >

陕西科技大学 陕西省人工智能联合实验室

陕西科技大学 电子信息与人工智能学院,陕西 西安 710021

兰州交通大学 电子与信息工程学院,甘肃 兰州 730070

无监督学习 Retinex 低照度图像增强 通道注意力 照明平滑度

国家自然科学基金项目国家自然科学基金项目甘肃省自然科学基金项目陕西省重点研发计划项目

618610246227129621JR7RA2822021ZDLGY08-07

2024

软件导刊
湖北省信息学会

软件导刊

影响因子:0.524
ISSN:1672-7800
年,卷(期):2024.23(7)