首页|改进DCGAN数据增强的生活垃圾图像识别

改进DCGAN数据增强的生活垃圾图像识别

扫码查看
为解决当前生活垃圾分类领域数据集存在的图像质量不高、类别分布不均衡的问题,提出一种基于改进DC-GAN数据增强的垃圾图像生成方法EW_DCGAN.首先重新设计DCGAN的网络结构,将生成器输出图像的大小调整至128×128像素;其次将损失函数BCE Loss替换为具有Wasserstein距离的损失函数,引入梯度惩罚项提升模型判别器的鉴别能力;最后在模型生成器中加入ECA注意力机制,使其能较好地应对图像中无效信息的干扰,进而高效提取有用特征.实验表明,使用EW_DCGAN生成的图像质量较高,FID值相较于仅使用DCGAN生成的图像下降明显,能扩充、增强垃圾分类领域数据集.基于迁移学习的ResNet、MobileNet、EfficientNet神经网络在增强前、后的数据集上的比较发现,模型的准确率相较于原始数据集分别提升7.09%、5.34%、4.8%.
Improved DCGAN Data Augmentation for Household Garbage Image Recognition
To address the issues of low image quality and uneven class distribution in the current field of household waste classification datas-ets,a garbage image generation method based on improved DCGAN data augmentation(EW-DCGAN)is proposed.Firstly,redesign the net-work structure of DCGAN and adjust the size of the output image of the generator to 128×128 pixels;Then,the loss function BCE Loss is re-placed with a loss function with Wasserstein distance,and a gradient penalty term is introduced to enhance the discriminative ability of the model discriminator;Finally,the ECA attention mechanism is added to the model generator to better cope with the interference of invalid in-formation in the image,thereby efficiently extracting useful features.The experiment shows that the image quality generated using EW-DC-GAN is higher,and the FID value decreases significantly compared to images generated only using DCGAN.It can expand and enhance the da-taset in the field of garbage classification.The comparison of ResNet,MobileNet,and EfficientNet neural networks based on transfer learning on the pre enhanced and post enhanced datasets showed that the accuracy of the models improved by 7.09%,5.34%,and 4.8%,respectively,compared to the original dataset.

deep convolutional generative adversarial networkgarbage classificationdata augmentationWasserstein distance

刘天锴、方睿、石兴、魏袁慧

展开 >

成都信息工程大学 计算机学院,四川 成都 610103

深度卷积生成对抗网络 垃圾分类 数据增强 Wasserstein距离

国家重点研发计划项目成都信息工程大学科研基金项目

2020YFA0608000KYTZ202156

2024

软件导刊
湖北省信息学会

软件导刊

影响因子:0.524
ISSN:1672-7800
年,卷(期):2024.23(7)