首页|基于YOLOv7-Tiny的改进型城市植物检测算法

基于YOLOv7-Tiny的改进型城市植物检测算法

扫码查看
城市路边植物的检测与识别是智能洒水车的关键技术.针对路边植被图像检测中的小目标漏检和遮挡问题,提出一种改进型YOLOv7-Tiny的植物检测算法.在创建数据集时,使用相机实景拍摄和图片爬虫抓取方法获取原始数据集,通过LabelImg进行人工标注,并采用mosaic数据增强方法扩充数据集.为兼具准确率和较高检测速度,首先将YOLOv7-Tiny网络作为baseline,在网络的Head部分引入无参数SimAM注意力机制,使网络在不增加模型复杂度的情况下聚焦更多重要的特征信息;其次在网络的Head部分将ACmix替换部分传统卷积,以实现更高效的特征融合;最后在算法中使用SIOU替换原YOLOv7-Tiny网络模型的CIOU来优化损失函数,以减少损失函数的自由度并提升网络鲁棒性.实验表明,改进算法在测试集上的均值平均精度mAP@50:95达到67.2%,相较于YOLOv7-Tiny算法提升3.1%,在保证模型轻量化的同时具有较高的检测精度,可满足智能洒水车轻量化植物检测的准确度和速度要求.
Improved Urban Plant Detection Algorithm Based on YOLOv7-Tiny
Detection and recognition of urban roadside plants is a key technology for intelligent sprinkler vehicles.A modified YOLOv7 Tiny plant detection algorithm is proposed to address the issues of small target missed detection and occlusion in roadside vegetation image detec-tion.When creating a dataset,the original dataset is obtained using camera realistic shooting and image crawler crawling methods,manually annotated using LabelImg,and the dataset is expanded using Mosaic data augmentation methods.To achieve both accuracy and high detection speed,the YOLOv7 Tiny network is first used as the baseline,and a parameter free SimAM attention mechanism is introduced in the Head part of the network to focus on more important feature information without increasing model complexity;Then,in the Head section of the net-work,ACmix is replaced with some traditional convolutions to achieve more efficient feature fusion;Finally,in the algorithm,SIOU is used to replace the CIOU of the original YOLOv7 Tiny network model to optimize the loss function,reducing the degree of freedom of the loss function and improving network robustness.The experiment shows that the average accuracy of the improved algorithm on the test set is average mAP@50:95 reaches 67.2%,which is 3.1%higher than the YOLOv7 Tiny algorithm.It has high detection accuracy while ensuring the lightweight of the model,and can meet the accuracy and speed requirements of lightweight plant detection for intelligent sprinklers..

target detectionlightweight networkattention mechanismYOLOv7-TinySIOU

祁新龙、黄万鹏、温金龙、丁毓峰

展开 >

武汉理工大学 机电工程学院,湖北 武汉 430070

目标检测 轻量化网络 注意力机制 YOLOv7-Tiny SIOU

国家级大学生创新创业训练计划项目

3120400002202210497050

2024

软件导刊
湖北省信息学会

软件导刊

影响因子:0.524
ISSN:1672-7800
年,卷(期):2024.23(7)
  • 4