首页|人工智能中的进化论:遗传算法情境教学

人工智能中的进化论:遗传算法情境教学

扫码查看
应用型本科院校电子信息专业学生在人工智能课程学习过程中,大多存在数学基础弱、智能知识少的问题.针对上述问题,提出采用情境教学法辅助学生快速掌握算法思想,有效提升课程教学质量,并详细描述遗传算法情景教学案例.结合苏州科技大学城建特色设计管道巡检情境,在模拟蛇形管道机器人巡检过程中展示遗传算法迭代过程.案例在诠释遗传算法的编码、选择、交叉和变异4个重要内容过程中,有机融入抽象总结、优化选择、交叉融通、勇于创新等思政元素.该情景教学案例在苏州科技大学研究生教学应用中反馈良好,近年来学生成绩有所提高,同时取得较好成果,并在其他高校实现推广应用,为一线教师教学设计提供了案例参考.
Evolutionary Theory in Artificial Intelligence:Genetic Algorithm Situational Teaching
During the learning process of artificial intelligence courses,students majoring in electronic information in applied undergraduate colleges often have weak mathematical foundations and limited knowledge of intelligence.In response to the above issues,this article proposes the use of situational teaching method to assist students in quickly mastering algorithm ideas,effectively improving the quality of course teach-ing,and provides a detailed description of genetic algorithm situational teaching cases.This article combines the characteristics of Suzhou Uni-versity of Science&Technology urban construction to design a pipeline inspection scenario,and demonstrates the genetic algorithm iteration process in simulating the snake shaped pipeline robot inspection process.In the process of interpreting the four important contents of genetic al-gorithm coding,selection,crossover,and mutation,the case organically incorporates ideological and political elements such as abstract sum-mary,optimized selection,cross integration,and the courage to innovate.This scenario teaching case has received good feedback in the appli-cation of graduate teaching in our school.In recent years,student grades and achievements have improved,and it has been promoted and ap-plied in other universities,providing a case reference for teaching design for frontline teachers.

artificial intelligencesituational teachinggenetic algorithmcurriculum ideology and politicssnake shaped pipeline robot

徐峰磊、王琛、胡伏原

展开 >

苏州科技大学 电子与信息工程学院,江苏 苏州 215009

人工智能 情境教学 遗传算法 课程思政 蛇形管道机器人

2024

软件导刊
湖北省信息学会

软件导刊

影响因子:0.524
ISSN:1672-7800
年,卷(期):2024.23(8)