首页|基于课程学习过程性数据的成绩预测研究

基于课程学习过程性数据的成绩预测研究

扫码查看
学生成绩预测在智慧教育领域备受瞩目,通过分析课程过程性学习数据预测期末考试成绩对于提高教学质量至关重要.选取2017-2019年青海大学程序设计基础(C)课程的学生学习数据作为研究对象,使用支持向量机、随机森林、多层感知器、极限梯度提升树和多元线性回归5种机器学习模型,根据过程性学习数据提前评估学生的期末表现,同时采用均方根误差、确定系数、平均绝对误差和均方误差评价模型预测性能.实验结果表明,5种机器学习模型在成绩预测方面均有较好表现,其中极限梯度提升树性能最佳.采用机器学习模型深入分析学生的过程性学习数据并提前预测其期末表现可以帮助教师优化教学过程,使学生获得更好的学习成绩和体验.
A Study on Grade Prediction Based on Course Learning Process Data
Student performance prediction has attracted much attention in the field of smart education,and predicting final exam scores through analyzing course process learning data is crucial for improving teaching quality.Selecting students' learning data from the program de-sign fundamentals(C)course at Qinghai University from 2017 to 2019 as the research object,five machine learning models including support vector machine,random forest,multilayer perceptron,extreme gradient boosting tree,and multiple linear regression were used to evaluate students' final performance in advance based on process learning data.Meanwhile,root mean square error,coefficient of determination,mean absolute error,and mean square error were used to evaluate the predictive performance of the models.The experimental results show that all five machine learning models have good performance in predicting grades,among which the extreme gradient boosting tree has the best perfor-mance.Using machine learning models to deeply analyze students' process learning data and predict their final performance in advance can help teachers optimize the teaching process,enabling students to achieve better learning outcomes and experiences.

achievement predictionteaching datamachine learning

姚河花、张彤、张顺、赵亚娟

展开 >

青海大学 计算机技术与应用学院,青海 西宁 810016

成绩预测 教学数据 机器学习

2024

软件导刊
湖北省信息学会

软件导刊

影响因子:0.524
ISSN:1672-7800
年,卷(期):2024.23(8)