首页|基于LSTM与深度矩阵分解的推荐融合模型

基于LSTM与深度矩阵分解的推荐融合模型

扫码查看
针对现实推荐场景中多数推荐算法忽略用户偏好动态变化的时效因素,导致模型性能受限的问题,提出一种基于LSTM和深度矩阵分解的推荐融合模型LFDMF.该模型通过广义矩阵分解学习用户和项目间非线性低阶特征,运用多层感知机学习用户和项目间非线性高阶特征,获取用户长期动态偏好,利用LSTM对时间序列的强拟合能力,获取用户短期动态偏好.为验证LFDMF模型的有效性和可行性,在公开数据集MovieLens-1M和Pinterest上进行对比实验.仿真实验表明,LFDMF模型的HR@10和NDCG@10指标相比传统MF算法分别提升了0.103 4和0.132 2、0.118 1和0.101 8;相比DMF模型分别提升了0.022 8和0.032 3、0.016 9和0.013 5,推荐性能显著提升.
Recommendation Fusion Model Based on LSTM and Deep Matrix Factorization
Aiming at the problem that most recommendation algorithms in real recommendation scenarios ignore the timeliness factors of dy-namic changes in user preferences,resulting in limited model performance,a recommendation fusion model based on LSTM and deep matrix factorization(Long Short-Term Memory Fusion Deep Matrix Factorization,LFDMF)is proposed.The model uses generalized matrix factoriza-tion to learn nonlinear low-order features between users and items,uses multi-layer perceptron to learn nonlinear high-order features between users and items,and obtains users' long-term dynamic preferences.LSTM's strong fitting ability to time series is used to obtain users' short-term dynamic preferences.In order to verify the effectiveness and feasibility of the LFDMF model,comparative experiments are carried out on the public datasets MovieLens-1M and Pinterest.The simulation results show that the HR@10 and NDCG@10 indexes of the LFDMF model are improved by 0.103 4 and 0.132 2,0.118 1 and 0.101 8,respectively,compared with the traditional MF algorithm.Compared with the DMF model,it is improved by 0.022 8 and 0.032 3,0.016 9 and 0.013 5,respectively,the recommendation performance is significantly improved.

recommendation fusiongeneralized matrix factorizationmultilayer perceptronskip connectionslong short-term memory

丁伟健、卢敏、杨忠明、陈丽萍

展开 >

江西理工大学 理学院,江西 赣州 341000

浙江省医学电子与数字健康重点实验室,浙江 嘉兴 314000

嘉兴南湖学院 图书馆,浙江 嘉兴 314001

推荐融合 广义矩阵分解 多层感知机 跳跃连接 长短期记忆网络

2024

软件导刊
湖北省信息学会

软件导刊

影响因子:0.524
ISSN:1672-7800
年,卷(期):2024.23(9)