首页|融合外部知识的知识图谱问答方法研究

融合外部知识的知识图谱问答方法研究

扫码查看
知识图谱问答是自然语言处理领域的热门研究方向之一.现有方法主要存在两大挑战:一是难以理解复杂的自然语言形式问题,二是实体表示通常只限于字面含义,缺乏深入的语义阐释.针对上述问题,提出一种融合外部知识的知识图谱问答方法DEK-KGQA.首先通过问题知识图谱子图和QA上下文构建联合图,其次利用预训练语言模型计算联合图中节点的相关性评分,最后引入外部知识,以增强问答推理过程中的信息交互和推理能力.在Com-monsenseQA数据集上进行实验验证,并与现有方法进行比较.实验结果表明,该方法在常识问答任务中取得了更好的效果,验证了该方法的有效性.此外,通过消融实验验证了该方法中各个部分对整体性能的影响.
Study on Knowledge Graph Question Answering Methods Incorporating External Knowledge
Knowledge graph question answering is one of the hot research areas in the field of natural language processing.Existing methods face two main challenges:difficulty in understanding complex natural language questions and limited semantic interpretation of entity repre-sentations.To address these challenges,a knowledge graph question answering method called DEK-KGQA is proposed,which integrates ex-ternal knowledge.First,a joint graph is constructed by combining the question knowledge graph subgraph and the QA context.Then,the rele-vance scores of nodes in the joint graph are calculated using pre-trained language models.Finally,external knowledge is introduced to en-hance information interaction and reasoning ability during the question answering process.Experimental validation is conducted on the Com-monsenseQA dataset,comparing the proposed method with existing methods.The results demonstrate that the proposed method achieves better performance in commonsense question answering tasks,validating its effectiveness.In addition,ablation experiments are conducted to evalu-ate the impact of each component on the overall performance.

knowledge graph question answeringQA contextpre-trained language modelexternal knowledge

白云天、郝文宁、靳大尉、刘小语

展开 >

陆军工程大学 指挥控制工程学院,江苏 南京 210014

知识图谱问答 QA上下文 预训练语言模型 外部知识

2024

软件导刊
湖北省信息学会

软件导刊

影响因子:0.524
ISSN:1672-7800
年,卷(期):2024.23(9)