首页|滇池蓝藻水华的RF-LSTM预测模型

滇池蓝藻水华的RF-LSTM预测模型

扫码查看
为了监测、分析气象因子对蓝藻水华暴发的制约作用,建立蓝藻水华暴发与气象因子的响应关系,预测蓝藻生物量及分布变化.通过随机森林算法定量评估气象因子的重要性和贡献率,优选出气象因子,采用长短期记忆网络构建蓝藻水华预测模型.选择滇池2000-2021年归一化植被指数的年值和同期昆明站气象数据为研究对象,以归一化植被指数作为蓝藻水华的变化指标,探讨基于随机森林算法的长短期记忆网络RF-LSTM在蓝藻水华预测中的可行性.结果表明,与单一结构的长短期记忆网络模型和单一算法的随机森林模型相比,RF-LSTM模型的年值预测通过0.01显著性检验,模拟精确度达90.9%.随机森林算法利于理解蓝藻水华与气象因子的关系,选择有预测性能的气象因子,从而提升长短期记忆网络模型的预测能力.
RF-LSTM Prediction Model for Cyanobacteria Blooms in Dianchi Lake
In order to monitor and analyze the constraining effect of meteorological factors on the outbreak of blue-green algae blooms,estab-lish the response relationship between blue-green algae blooms and meteorological factors,and predict changes in blue-green algae biomass and distribution.Quantitatively evaluate the importance and contribution rate of meteorological factors through random forest algorithm,select meteorological factors,and construct a blue-green algae bloom prediction model using long short-term memory network.Selecting the annual values of normalized vegetation index in Dianchi Lake from 2000 to 2021 and meteorological data from Kunming Station during the same peri-od as the research objects,this study explores the feasibility of using the long short-term memory network RF-LSTM based on the random for-est algorithm to predict blue-green algae blooms,with normalized vegetation index as the indicator of changes in blue-green algae blooms.The results showed that compared with the single structure long short-term memory network model and the single algorithm random forest model,the RF-LSTM model's annual value prediction passed the 0.01 significance test,and the simulation accuracy reached 90.9%.The random for-est algorithm is beneficial for understanding the relationship between blue-green algae blooms and meteorological factors,selecting meteoro-logical factors with predictive performance,and thus improving the predictive ability of long short-term memory network models.

cyanobacterial bloomsmeteorological factorrandom forestlong and short term memory networkDianchi Lake

邹阳、刘祎、段玮、范思若

展开 >

云南省昆明市气象局

云南省气象局气象科学研究所,云南 昆明 650034

成都东软学院 计算机与软件学院,四川 成都 611844

蓝藻水华 气象因子 随机森林 长短期记忆网络 滇池

2024

软件导刊
湖北省信息学会

软件导刊

影响因子:0.524
ISSN:1672-7800
年,卷(期):2024.23(9)