首页|面向电网行业的多模态心理评测算法

面向电网行业的多模态心理评测算法

扫码查看
为完成电网高危行业从业人员进行作业前的智能心理评测任务,提出面向电网行业员工的包含表情、声音、走姿的多模态心理评测算法.首先,构建电网行业员工数据集,从视频中抽取面部RGB图片序列、音频ComparE特征集及人体骨架关键点序列;其次,利用残差网络与双向长短时记忆网络提取面部视觉特征,在时间窗口提取音频特征,在时空图卷积网络提取步态特征,分别得到最优的单模态模型;最后,提出极性损失函数的深度学习训练方法及基于注意力机制的多模态融合算法,通过融合单模态模型输出特征获得最优多模态心理状态评测模型.实验表明,多模态融合相较于单模态系统能显著提升心理评测准度,对心理标签四分类任务的准确率达到65.66%,相较于基于面部表情、语音、步态3种单一模态的模型效果分别提升18.04%、21.22%和13.28%.
Multimodal Psychological Evaluation Algorithm for Power Grid Industry
To solve the intelligent psychological evaluation task for high-risk industry employees in the power grid before work,a multimodal psychological evaluation algorithm is proposed for employees in the power grid industry,which includes expressions,sounds,and walking pos-ture.Firstly,construct a dataset of employees in the power grid industry,extracting facial RGB image sequences,audio ComparE feature sets,and human skeleton keypoint sequences from videos;Secondly,residual networks and bidirectional long short-term memory networks are used to extract facial visual features,audio features are extracted in time windows,and gait features are extracted in spatiotemporal graph convolutional networks,respectively,to obtain the optimal single modal models;Finally,a deep learning training method for polarity loss function and a multimodal fusion algorithm based on attention mechanism are proposed to obtain the optimal multimodal psychological state evaluation model by fusing the output features of a single modal model.The experiment shows that multimodal fusion can significantly improve the accuracy of psychological evaluation compared with single-mode system,and the accuracy rate of the four classification tasks of psycholog-ical labels reaches 65.66%.Compared with the model based on facial expression,voice,and gait,the effect of multimodal fusion is increased by 18.04%,21.22%,and 13.28%respectively.

multimodalitydeep learningattention mechanismpsychological evaluationpower grid industry

李华亮、梁泽权、黄星杰、刘羽中、吕建明

展开 >

广东电网有限责任公司 电力科学研究院

广东电网有限责任公司 职业健康安全重点实验室,广东 广州 510062

华南理工大学 计算机科学与工程学院

华南理工大学 大数据与智能机器人教育部重点实验室,广东 广州 510006

展开 >

多模态 深度学习 注意力机制 心理评测 电网行业

2024

软件导刊
湖北省信息学会

软件导刊

影响因子:0.524
ISSN:1672-7800
年,卷(期):2024.23(9)