首页|基于自注意力编解码结构的旋转机械故障诊断与预测系统

基于自注意力编解码结构的旋转机械故障诊断与预测系统

扫码查看
由于恶劣的运行条件和高负荷要求,旋转机械故障可能导致高昂的维护成本和不必要的停机时间.有必要开发一个高效、准确的旋转机械故障在线诊断和预测系统,帮助企业快速识别故障,预测未来事件,优化维修计划.构造状态矩阵表示旋转机械产生的振动信号,即将一个连续时间序列划分为多个窗口,并将每个窗口转换为一个图像.由特定结构的串联编解码器提取并处理图像特征,用于分类训练数据集中的振动模式.通过仿真实验验证了基于自注意力编解码结构的旋转机械故障在线诊断和预测系统的可靠性和有效性,构建的旋转机械状态特征库可以准确诊断和预测旋转机械的故障.研究表明,该系统可以帮助企业优化维护计划,减少停机时间和维护成本.
A Fault Diagnosis and Prediction System for Rotating Machinery Based on Self-Attention Encoding and Decoding Structure
Due to harsh operating conditions and high load requirements,rotating machinery faults can lead to high maintenance costs and un-necessary downtime.It is necessary to develop an efficient and accurate rotating machinery fault online diagnosis and prediction system to help enterprises quickly identify faults,predict future events,and optimize maintenance plans.The construction state matrix represents the vibra-tion signal generated by rotating machinery,that is,a continuous time series is divided into several Windows,and each window is converted into an image.Image features are extracted and processed by a series codec of a specific structure to classify vibration patterns in a training da-ta set.The reliability and effectiveness of the online fault diagnosis and prediction system for rotating machinery based on self-attention codec structure are verified by simulation experiments.The state characteristic database of rotating machinery can accurately diagnose and predict the faults of rotating machinery.The system can help businesses optimize maintenance schedules and reduce downtime and maintenance costs.

fault diagnosisrotating machineryTransformerconvolutional neural network

朱珊珊、郭虎、余海波、杨明翰、汪建业

展开 >

安徽工业技术创新研究院六安院,安徽 六安 237100

中国科学技术大学 研究生院科学岛分院,安徽 合肥 230026

中国科学院合肥物质科学研究院,安徽 合肥 230031

故障诊断 旋转机械 Transformer 卷积神经网络

2024

软件导刊
湖北省信息学会

软件导刊

影响因子:0.524
ISSN:1672-7800
年,卷(期):2024.23(9)