首页|基于标签感知注意力的短文本分类方法

基于标签感知注意力的短文本分类方法

扫码查看
针对目前短文本分类只是将分类标签作为分类结果判断依据,而忽略了分类标签文本中所蕴含的语义信息这一问题,提出以大规模预训练语言模型为基础的基于标签感知注意力的短文本分类方法.该方法通过大规模预训练语言模型将文本数据表征为分布式向量形式以获得更丰富的语义信息;同时将分类标签信息融入到文本数据训练过程中,通过注意力机制使文本数据感知与分类最相关的信息;使用CNN网络和最大池化层提取局部词级向量特征,以更好地解决英文文本中的双重否定、比较级否定等语义问题;使用残差连接将句级向量与词级向量融合,以有效缓解文本信息衰减问题.在R8、R52和MR 3个公共英文数据集上进行测试,实验结果表明,所提方法在R8和R52数据集上的精度分别为98.51%和97.10%,优于DeBERTa和BertGCN.
Short Text Classification Method Based on Label Awareness Attention
Aiming at the problem that current short text classification only uses classification labels as the basis for judging classification re-sults,and ignores the semantic information contained in the classified label text,a short text classification method based on label aware atten-tion is proposed,which is based on a large-scale pre trained language model.This method represents text data in distributed vector form through large-scale pre trained language models to obtain richer semantic information;At the same time,incorporating classification label in-formation into the text data training process,using attention mechanisms to make the text data perceive and classify the most relevant informa-tion;Using CNN networks and max pooling layers to extract local word level vector features,in order to better address semantic issues such as double negation and comparative negation in English texts;Using residual connections to fuse sentence level vectors with word level vectors ef-fectively alleviates the problem of text information decay.Tests were conducted on three common English datasets,R8,R52,and MR,and the experimental results showed that the proposed method achieved accuracies of 98.51%and 97.10%on the R8 and R52 datasets,respective-ly,which are better than DeBERTa and BertGCN.

short text classificationCNNlabel awarenessattentionpre-trained

李大帅、叶成荫

展开 >

辽宁石油化工大学 信息与控制工程学院,辽宁 抚顺 113001

短文本分类 CNN 标签感知 注意力 预训练

2024

软件导刊
湖北省信息学会

软件导刊

影响因子:0.524
ISSN:1672-7800
年,卷(期):2024.23(9)