首页|基于支持向量机算法的葡萄酒质量检测模型

基于支持向量机算法的葡萄酒质量检测模型

扫码查看
随着我国经济的不断发展,葡萄酒作为一种悦人悦己的生活媒介已经登上大众餐桌.然而,葡萄酒的质量检测仍以品酒师品尝为主,已不能满足规模化、智能化的食品工业发展需求.为此,基于支持向量机算法对葡萄酒理化指标进行建模,利用R语言实现Box-plot法对异常值进行处理,同时对RBF核的支持向量机参数进行优化,最终得到一个精度达到96.46%的葡萄酒质量检测模型,为葡萄酒的质量控制提供了一条行之有效的途径.
Wine Quality Detection Model Based on Support Vector Machine Algorithm
With the continuous development of our country's economy,wine,as a delightful medium of life,has entered the public dining ta-ble.However,the quality inspection of wine is still mainly based on the tasting of wine tasters,which can no longer meet the needs of the large-scale and intelligent development of the food industry.Therefore,based on the support vector machine algorithm,the physicochemical indicators of wine were modeled,and the Box plot method was implemented using R language to handle outliers.At the same time,the support vector machine parameters of the RBF kernel were optimized,resulting in a wine quality detection model with an accuracy of 96.46%.This pro-vides an effective approach for wine quality control.

support vector machineR languageBox-plot methodwine quality testing

张一明、魏霖静

展开 >

甘肃农业大学 理学院

甘肃农业大学 信息科学技术学院,甘肃 兰州 730070

支持向量机 R语言 Box-plot法 葡萄酒质量检测

2024

软件导刊
湖北省信息学会

软件导刊

影响因子:0.524
ISSN:1672-7800
年,卷(期):2024.23(9)