首页|基于改进主动生成式过采样的个人信用风险评估研究

基于改进主动生成式过采样的个人信用风险评估研究

扫码查看
针对个人信用风险评估中的样本不均衡和类别重叠问题,提出一种改进的主动生成式过采样模型.首先,在辅助分类器生成对抗网络(ACGAN)框架的基础上引入Wasserstein距离改善真假判别损失函数,加入梯度惩罚以防止模式崩溃;其次,采用Focal loss代替传统交叉熵损失,以增强对困难样本的识别能力;最后,利用所提模型对不平衡数据进行过采样,以提升分类器性能.针对真实信贷数据的实验表明,该模型将分类器的分类性能指标F1、AUC及G-means分别提升11.2%、1.7%、12.8%,在增强样本多样性、减少类别重叠及提升分类器针对非平衡数据集的分类效能方面取得了显著成效.
Research on Personal Credit Risk Assessment Based on Improved Active Generative Oversampling
Aiming at the problems of sample imbalance and category overlap in personal credit risk assessment,an improved active generative oversampling model is proposed.Firstly,based on the auxiliary classifier generative adversarial network(ACGAN)framework,Wasserstein distance is introduced to improve the true false discrimination loss function,and gradient penalty is added to prevent pattern collapse;Second-ly,Focal loss is used instead of traditional cross entropy loss to enhance the ability to identify difficult samples;Finally,the proposed model is used to oversample imbalanced data to improve classifier performance.Experiments on real credit data show that the model improves the classifier's classification performance indicators F1,AUC,and G-means by 11.2%,1.7%,and 12.8%,respectively.It achieves significant results in enhancing sample diversity,reducing class overlap,and improving the classifier's classification performance on imbalanced datas-ets.

deep learningunbalanced dataclass overlapACGANfocal lossWasserstein distance

顾哲涵、黄宝凤

展开 >

南京邮电大学 经济学院,江苏 南京 210023

深度学习 不平衡数据 类重叠 ACGAN focal loss Wasserstein距离

2024

软件导刊
湖北省信息学会

软件导刊

影响因子:0.524
ISSN:1672-7800
年,卷(期):2024.23(9)