首页|基于Transformer的遥感影像弱监督语义分割

基于Transformer的遥感影像弱监督语义分割

扫码查看
针对遥感影像语义分割任务场景复杂、标注成本高的问题,提出一种基于Transformer的端到端图像级标签弱监督语义分割网络.首先,通过多类别标记编码模块,提高类别激活映射图的精确度和细粒度;其次,通过亲和伪标签生成模块进一步完成亲和关系表征的细化,生成高精度亲和伪标签作为分割监督信息,从而提高弱监督网络的能力;同时,设计混合标签数据增强模块强化遥感数据构成;最后,给出融合亲和损失的混合损失函数,强化网络的学习性能.在ISAID数据集上的实验结果表明,该模型在使用图像级标签下分割结果的mIoU达到38.836%,较对照网络表现出更好的鲁棒性和可靠性,在遥感影像弱监督语义分割领域具有较高的应用价值.
Transformer Based Weakly-Supervised Semantic Segmentation of Remote Sensing Images
A Transformer based end-to-end image level weakly supervised semantic segmentation network is proposed to address the complex scene and high annotation cost of remote sensing image semantic segmentation tasks.The network first improves the accuracy and granularity of the class activation map through a multi class label encoding module;Then,the affinity pseudo label generation module is used to further re-fine the representation of affinity relationships,generating high-precision affinity pseudo labels as segmentation supervision information,thereby improving the ability of weakly supervised networks;Simultaneously designing a mixed label data augmentation module to enhance the composition of remote sensing data;Finally,a mixed loss function with fusion affinity loss is provided to enhance the learning performance of the network.The experimental results on the ISAID dataset show that the model achieves an mIoU of 38.836%in segmentation results using im-age level labels,demonstrating better robustness and reliability compared to the control network.It has high application value in weakly super-vised semantic segmentation of remote sensing images.

remote sensing imageweakly-supervised semantic segmentationimage-level labelsTransformer

魏梦菲、袁和金

展开 >

华北电力大学 计算机系

复杂能源系统智能计算教育部工程研究中心,河北 保定 071003

遥感影像 弱监督语义分割 图像级标签 Transformer

2024

软件导刊
湖北省信息学会

软件导刊

影响因子:0.524
ISSN:1672-7800
年,卷(期):2024.23(9)