首页|基于改进自编码器与深度特征提取器的晶圆表面缺陷检测

基于改进自编码器与深度特征提取器的晶圆表面缺陷检测

扫码查看
为有效解决半导体缺陷检测面临的缺陷样本不足、缺陷样本多样化的问题,采用DFR模型作为基础框架,提出了一种基于改进自编码器和深度特征提取器的晶圆表面缺陷检测模型.该模型利用预训练的VGG19模型作为特征提取器能更好地提取特征;利用改进自编码器重构图像、学习图像正常特征.通过实验比较输入和生成图像的全局差异以获得异常分数进行缺陷检测,在自制晶圆数据集中,所提方法相较于基准模型的平均AUC提升0.8%,缺陷检测的精度达到0.997;在MVTec AD数据集中,所提方法相较于基准模型平均AUC提升2.5%,缺陷检测精度达到0.963.
Wafer Surface Defect Detection Based on Improved Autoencoder and Deep Feature Extractor
In today's semiconductor defect detection field,it always faces the problem of insufficient defect samples and diversified defect samples,in order to solve the problem effectively,a wafer surface defect detection model based on improved self-encoder and deep feature ex-tractor is proposed by using the DFR model as the basic framework,which achieves a better feature extraction by using the pre-trained VGG19 model as a feature extractor,and subsequently image reconstruction using improved self-encoder to learn the normal features of the image.The anomaly scores are obtained by comparing the global differences between the input and generated images for defect detection,and the results show that for the homemade wafer dataset,the average AUC improves by 0.8 percentage points compared to the baseline model,and the accu-racy of defect detection reaches 0.997;for the MVTec AD dataset,the average AUC improves by 2.5 percentage points compared to the base-line model,and the accuracy of defect detection reaches 0.963.

defect detectionfeature extractionautoencoderAFF attention mechanism

凌鸿伟、张建敏

展开 >

江汉大学 人工智能学院,湖北 武汉 430056

缺陷检测 特征提取 自编码器 AFF注意力机制

2024

软件导刊
湖北省信息学会

软件导刊

影响因子:0.524
ISSN:1672-7800
年,卷(期):2024.23(10)