首页|基于特征重组与IQPSO-BILSTM-RF的短期风电功率预测

基于特征重组与IQPSO-BILSTM-RF的短期风电功率预测

扫码查看
短期风电功率预测对电力系统正常运转至关重要,为了提升风电功率预测精度,提出基于特征重组方法和改进量子粒子群算法(IQPSO)优化双向长短期记忆网络(BILSTM)与随机森林(RF)的短期风电功率预测组合模型.首先,运用局部均值分解处理风电数据得到多个子分量,并计算其模糊熵以重组新特征分量.其次,采用IQPSO优化的BILSTM预测特征分量,将各分量结果叠加得到初步预测值.最后,使用IQPSO优化的RF对初步预测值进行误差修正.实验表明,该模型决定系数(R2)达到了0.994 25,优于其他模型,消融实验也验证了各模块的必要性.
Short-Term Wind Power Prediction Based on Feature Recombination and IQPSO-BILSTM-RF
Short term wind power prediction is crucial for the normal operation of the power system.In order to improve the accuracy of wind power prediction,a combination model of bidirectional long short-term memory network(BILSTM)and random forest(RF)is proposed based on feature recombination method and improved quantum particle swarm optimization algorithm(IQPSO)to optimize the short-term wind power prediction.Firstly,using local mean decomposition to process wind power data,multiple sub components are obtained,and their fuzzy entro-py is calculated to recombine new feature components.Secondly,using IQPSO optimized BILSTM to predict feature components,the results of each component are superimposed to obtain preliminary predicted values.Finally,error correction was performed on the preliminary predicted values using IQPSO optimized RF.The experiment showed that the coefficient of determination(R2)of the model reached 0.994 25,which is superior to other models.The ablation experiment verified the necessity of each module.

wind power predictionfeature recombinationimproved quantum particle swarm optimization algorithmbidirectional long short-term memory networkrandom foresterror correction

王嘉琪、张玲华、胡枫

展开 >

南京邮电大学 通信与信息工程学院

南京邮电大学 江苏省通信与网络技术工程研究中心,江苏 南京 210003

风电功率预测 特征重组 改进量子粒子群优化算法 双向长短期记忆网络 随机森林 误差修正

2024

软件导刊
湖北省信息学会

软件导刊

影响因子:0.524
ISSN:1672-7800
年,卷(期):2024.23(12)