首页|基于多尺度特征融合的自监督工业部件异常检测算法

基于多尺度特征融合的自监督工业部件异常检测算法

扫码查看
工业部件异常检测是工业生产中的关键问题,其主要目的是及时发现和识别异常部件,以保证产品质量和生产效率.然而,当前工业部件异常检测算法仍面临极大的挑战,例如不同尺度的目标瑕疵对算法准确性的影响,所有可能的异常数据无法被穷尽的不确定性等.为解决上述问题,提出一种基于多尺度特征融合的自监督工业部件异常检测算法,采用泊松融合将不同大小的矩形块无缝融入正常样本以生成异常样本标签对,并在基于编解码结构的CNN模型基础上提出注意力空洞空间金字塔池化耦合(A-ASPP)模块.该模块通过空洞空间金字塔池化实现图像的多尺度特征提取,并利用通道注意力和空间注意力机制实现多尺度特征交互与重点区域加权,最后通过模型输出的概率图定位异常区域.实验结果表明,在公共数据集MvTecAD中,针对螺钉类别,该方法的AUROC指标相比NSA方法提高了9.2%,且在该数据集上的平均AUROC达到98.5%,优于NSA方法.
Self-Supervised Anomaly Detection Algorithm for Industrial Components Based on Multi-scale Feature Fusion
Industrial component anomaly detection is a key issue in industrial production,where the main objective is to detect and identify anomalous components in time to ensure product quality and production efficiency.However,current industrial component anomaly detection algorithms are still extremely challenging,such as the impact of target defects at different scales on the accuracy of the algorithms,the uncer-tainty that all possible anomaly data cannot be exhausted.To solve the above problems,proposed a self-supervised anomaly detection algo-rithm for industrial components based on multi-scale feature fusion.Using Poisson fusion to seamlessly integrate rectangular blocks of different sizes into normal samples to generate anomaly sample label pairs,and proposes an Attention Atrous Spatial Pyramid Pooling(A-ASPP)mod-ule based on a CNN model with encoder-decoder structure,which achieves multi-scale feature extraction of images through Atrous Spatial Pyramid Pooling,and uses channel attention mechanism and spatial attention mechanism to achieve multi-scale feature interaction and focus region weights,and finally locates anomalous regions through the probability map output by the model.The experimental results show that the AUROC metric of this paper's method improves by 9.2%compared to the NSA method for the screw category in the public dataset MvTecAD.The method in this paper achieves an average AUROC of 98.5%on this dataset,superior to NSA methods.

self-supervised learningmulti-scale feature fusionPoisson integrationattention mechanism

李倩、高琳、李思源、刁仁宏、吴炳剑

展开 >

成都信息工程大学 区块链产业学院,四川 成都 610225

成都易乐科技开发有限责任公司,四川 成都 610041

自监督学习 多尺度特征融合 泊松融合 注意力机制

2024

软件导刊
湖北省信息学会

软件导刊

影响因子:0.524
ISSN:1672-7800
年,卷(期):2024.23(12)