首页|粒子群优化的随机森林算法在二次润叶参数寻优中的研究

粒子群优化的随机森林算法在二次润叶参数寻优中的研究

扫码查看
二次润叶出口含水率和温度的稳定性是评估烟叶打叶复烤工艺的关键指标.针对云南某复烤厂二次润叶生产中环境温度、水蒸汽流量等参数导致二润出口指标难以准确控制的问题,通过构建基于粒子群优化的随机森林算法模型,探究不同工况条件下各参数对二润出口指标的影响.对二次润叶参数历史数据进行清洗,剔除脏数据之后进行皮尔逊系数分析,找到与出口质量紧密关联的生产控制关键参数.结合现场人工经验和关联分析,使用粒子群优化的随机森林算法对回风温度、热风温度、排潮风门和补偿蒸汽阀门开度进行寻优,并与随机森林、灰狼优化的随机森林和BP神经网络进行对比.研究结果表明,该算法得到的回风温度和热风温度均方误差为0.003,排潮风门和补偿蒸汽阀门开度均方误差为0.001,可为操作人员调整设备、提升烟叶复烤质量提供理论依据.
Research on Optimization of Secondary Leaf Watering Parameters by Particle Swarm Optimized Random Forest Algorithm
The moisture content and temperature stability at the exit of the secondary moistening leaves are the key indexes to evaluate the re-curing process of tobacco leaves.However,it is difficult to accurately control the outlet index of secondary moistening in a regrilling plant in Yunnan province due to parameters such as ambient temperature and water steam flow.Through the construction of random forest algorithm model based on particle swarm optimization,the influence of various parameters on the export index of two rungs under different working condi-tions was explored.After cleaning the historical data of secondary leaf wetting parameters,Pearson coefficient analysis was carried out after re-moving dirty data to find the key production control parameters closely related to export quality.Combined with field manual experience and correlation analysis,the random forest algorithm of particle swarm optimization was used to optimize the return air temperature,hot air temper-ature,drain damper and compensation steam valve opening,and compared with random forest,gray wolf optimization random forest and BP neural network.The results show that the mean square error of return air temperature and hot air temperature obtained by the proposed algo-rithm is 0.003,and the mean square error of the opening of the tidal damper and the compensating steam valve is 0.001.The algorithm pro-vides a theoretical basis for operators to adjust the equipment and improve the quality of tobacco recuring.

secondary leaf rinsingrandom forestparticle swarm optimizationcorrelation analysismean square error

朱毓航、李俊、李继斌、李晓冬、毛林伟、杨博、张达富、罗晓峰

展开 >

云南烟叶复烤有限责任公司,云南 昆明 650021

中国烟草总公司云南省公司,云南 昆明 650011

二次润叶 随机森林 粒子群优化 关联分析 均方误差

2024

软件导刊
湖北省信息学会

软件导刊

影响因子:0.524
ISSN:1672-7800
年,卷(期):2024.23(12)