首页|基于环境判断的激光视觉融合定位算法

基于环境判断的激光视觉融合定位算法

扫码查看
为了解决在某些低纹理或障碍物少场景下SLAM系统定位精度低的问题,提出一种基于环境判断的激光视觉融合定位算法.该算法通过比较激光传感器和视觉传感器所获取的信息量判断当前环境是有利于激光传感器还是视觉传感器.为每个传感器设置一个权重,根据各传感器信息所占权重对位姿进行优化以提高定位精度.此外,由于激光传感器获取的纹理信息有限,采用激光传感器进行回环检测误差较大.为提高回环检测精度,依据环境判断的结果动态决定是使用激光传感器还是视觉传感器进行回环检测,再对机器人位姿进行全局优化,以平摊误差.实验结果证明,在复杂环境下,相较于改进前的算法,所提算法精确度更高,在mh_02_easy、V1_02_medium、V1_03_difficult 3个序列中的误差分别为0.031/0.025、0.040/0.037、0.036/0.033,能很好地贴合真实轨迹.
Laser Vision Fusion Localization Algorithm Based on Environment Judgment
In order to solve the problem of low positioning accuracy of SLAM systems in certain low texture or low obstacle scenes,a laser vi-sion fusion positioning algorithm based on environmental judgment is proposed.This algorithm compares the amount of information obtained by laser sensors and visual sensors to determine whether the current environment is favorable for laser sensors or visual sensors.Set a weight for each sensor and optimize the pose based on the weight of each sensor's information to improve positioning accuracy.In addition,due to the lim-ited texture information obtained by laser sensors,using laser sensors for loop detection results in significant errors.To improve the accuracy of loop detection,it is dynamically determined whether to use laser sensors or visual sensors for loop detection based on environmental judgment results,and then the robot pose is globally optimized to spread out errors.The experimental results show that in complex environments,the proposed algorithm has higher accuracy compared to the original algorithm.The errors in the three sequences of mh_02/easy,V1_02/medium,and V1_03-difficult are 0.031/0.025,0.040/0.037,and 0.036/0.033,respectively,which can fit the real trajectory well.

localizationcomplex environmentslaser sensorsvision sensorsenvironmental judgmentloop closure detection

曹一波、范敬文、杨正东、赵佳恒

展开 >

华南师范大学 软件学院,广东 佛山 538200

定位 复杂环境 激光传感器 视觉传感器 环境判断 回环检测

2024

软件导刊
湖北省信息学会

软件导刊

影响因子:0.524
ISSN:1672-7800
年,卷(期):2024.23(12)