首页|基于扩展卡尔曼滤波算法的梯度VAD技术

基于扩展卡尔曼滤波算法的梯度VAD技术

扫码查看
梯度VAD技术是为克服传统VAD技术受速度模糊较大影响而被提出,但在使用梯度VAD技术过程中,由于方位径向速度中的误差或者噪声会在径向速度方位梯度中放大,因而通常使用低通滤波对径向速度方位梯度进行平滑,但它仍然对水平风场反演的准确性产生了严重影响.鉴于此,提出使用扩展卡尔曼滤波算法(EKF)对方位径向速度梯度进行处理,结果显示扩展卡尔曼滤波算法可以有效降低方位径向速度中的小波动和噪声在方位径向速度梯度中产生的影响,从而实现对风场反演水平精度的提升.对厦门SA波段多普勒雷达数据进行速度未退模糊和速度退模糊两次预处理,再分别经由低通滤波和EKF对比,结果表明,EKF算法比低通滤波算法下的方差在速度退模糊和不退模糊的数据处理过程中分别缩小了40%左右和50%左右,由此说明EKF处理后的径向速度梯度更稳定,从而提升了梯度VAD技术的反演精度.
Gradient VAD Technology Based on Extended Kalman Filter Algorithm
Gradient VAD technology is proposed to overcome the significant impact of velocity ambiguity on traditional VAD techniques.How-ever,during the use of gradient VAD technology,errors or noise in radial velocity can be amplified in the radial velocity azimuth gradient.Therefore,low-pass filtering is usually used to smooth the radial velocity azimuth gradient.However,it still has a serious impact on the accu-racy of horizontal wind inversion.This article proposes to use the extended Kalman filter(EKF)algorithm to process the radial velocity gradi-ent in the azimuth direction.The results show that theextended Kalman filter algorithm can effectively reduce the influence of small fluctua-tions and noise in the radial velocity gradient in the azimuth direction,thereby improving the horizontal accuracy of wind field inversion.In this article,the Xiamen SA band Doppler radar data was preprocessed twice with velocity un deblurring and velocity de deblurring,and then compared with low-pass filtering and EKF.The results showed that the variance of EKF algorithm compared with low-pass filtering algorithm was reduced by about 40%and 50%respectively in the process of velocity de deblurring and non thrust blur data processing.This indicates that the radial velocity gradient after EKF processing is more stable,thus improving the inversion accuracy of gradient VAD technology.

extended Kalman filter algorithmgradient VADDoppler weather radarwind field inversionlow-pass filtering

魏敏、谭思俊

展开 >

成都信息工程大学 计算机学院,四川 成都 610200

扩展卡尔曼滤波算法 梯度VAD 多普勒天气雷达 风场反演 低通滤波

2024

软件导刊
湖北省信息学会

软件导刊

影响因子:0.524
ISSN:1672-7800
年,卷(期):2024.23(12)