首页|基于不对称相似度与平均组满意度的需求群组融合

基于不对称相似度与平均组满意度的需求群组融合

扫码查看
随着服务计算技术的蓬勃发展,服务范畴已从线上服务扩展到线下旅游、购物、餐饮等各行业领域,产生了海量的个性化服务定制需求.然而,鉴于定制成本等因素,服务提供商往往不会为小规模用户逐一提供个性化定制服务.从大量用户的个性化服务定制需求中找到共性,将相似需求聚类融合成组,以形成较大规模的群组定制需求将有望建立供需双赢局面.这一需求成组操作需基于需求之间的不对称相似度开展,而现有的聚类算法都是依靠相似度进行的,并没有考虑聚类后对象的兼容性.为此,提出针对个人服务定制需求的群组融合方法,增加了满意度这一限制条件,在此条件下进行需求对象的聚类工作,并在建立定制需求模型的基础上给出需求之间不对称相似度的计算方法,进而以最大平均组满意度为优化目标设计群组构建及融合算法,以将若干相似的个人定制需求成组并融合为一个全组满意的群组定制需求.通过具体实验演示,证明了该方法的可行性和有效性.
Requirement Group Fusion Based on Asymmetric Similarity and Average Group Satisfaction
With the booming development of service computing technology,the scope of services has expanded from online services to offline travel,shopping,catering and other industry sectors,generating massive demand for personalized service customization.However,given the cost of customization and other factors,service providers often do not provide personalized services for small-scale users one by one.Finding commonalities in the personalized service customization needs of a large number of users,and clustering and fusing similar needs into groups to form larger-scale group customization needs are expected to establish a win-win situation for both supply and demand.This demand group-ing operation needs to be carried out based on the asymmetric similarity between demands,while existing clustering algorithms rely on similari-ty and do not consider the compatibility of objects after clustering.To this end,a group fusion method is proposed for personal service custom-ization requirements,with the added constraint of satisfaction,under which the clustering of demand objects is carried out,and the calcula-tion method of asymmetric similarity between requirements is given based on the establishment of the customization requirement model,and then the group construction and fusion algorithms are designed with the optimization objective of maximum average group satisfaction,in order to group several similar personal customization requirements into a single group and to fused into a group customization requirement with full group satisfaction,and finally demonstrated the feasibility and effectiveness of the method through specific experiments.

service calculationpersonalizationasymmetric similaritygroup fusionclusteringgroup satisfaction

李志鹏、刘茜萍、张琳

展开 >

南京邮电大学 计算机学院,江苏 南京 210023

服务计算 个性化定制 不对称相似度 群组融合 聚类 组满意度

2024

软件导刊
湖北省信息学会

软件导刊

影响因子:0.524
ISSN:1672-7800
年,卷(期):2024.23(12)