首页|基于数字孪生的无人平行智能搜救系统

基于数字孪生的无人平行智能搜救系统

扫码查看
为解决未知搜救场景下人工救援决策危险系数高、全局信息了解不足、决策效率低等问题,将数字孪生与机器人集群技术相结合,借助数字孪生良好的可视信息整合能力及虚拟平行推演决策能力,以无人化方式高效完成搜救任务.首先,提出一种分层多机智能搜救数字孪生框架,详细介绍各组成部分并对其进行理论分析.其次,考虑到搜救任务的实时需求,基于SLAM提出一种动静结合的实时数字孪生模型构建方法.针对高速移动下虚实不同步、搜索定位目标精度不足、缺乏直接救援路径规划辅助决策等问题,分别设计了在线虚实同步模块、协同目标搜索定位模块、平行决策救援路径规划模块.最后,基于提出的框架和设计的模块,使用Unity3D虚拟引擎开发了数字孪生原型系统,在模拟搜救场景下进行实验验证.结果证明了系统的可靠性,为未来完成智能化搜救任务提供了有效参考.
Unmanned Parallel Intelligent Search and Rescue System Based on Digital Twins
In response to the challenges of high-risk factors,inadequate global information understanding,and low decision-making efficien-cy in artificial rescue operations within unknown search and rescue scenarios,this study proposes integrating digital twins and robot clusters for efficient decision-making.Digital twins'visual integration and virtual inference capabilities are leveraged for unmanned execution of search and rescue tasks.A hierarchical multi-machine intelligent search and rescue digital twin framework is proposed along with a real-time model construction method based on SLAM.Each component is introduced in detail and theoretically analyzed.To address real-time mission requirements,the study designs online synchronization modules,collaborative target search and positioning modules,and parallel decision-making rescue path planning modules.These elements aim to overcome challenges such as asynchronous dynamics and inadequate accuracy in target search and positioning.Implemented in a Unity3D-based prototype system,the framework and modules are validated in simulated sce-narios,demonstrating reliability and efficiency.This research contributes valuable insights for enhancing artificial rescue operations.

urban search and rescuedigital twinparallel intelligenceunmanned systemscluster collaboration

郭洛松、蔡庚沅、朱琨、章阳、王俊华

展开 >

南京航空航天大学 计算机科学与技术学院,江苏 南京 211106

城市搜救 数字孪生 平行智能 无人系统 集群协同

2024

软件导刊
湖北省信息学会

软件导刊

影响因子:0.524
ISSN:1672-7800
年,卷(期):2024.23(12)