首页|大语言模型在医疗应急知识图谱问答服务中的智能化实践探索

大语言模型在医疗应急知识图谱问答服务中的智能化实践探索

扫码查看
目前我国医疗应急预案领域规模庞大但智能化程度不高,知识图谱问答系统能够将操作核心由人转移到机器,从而实现智能化,但该领域高质量知识图谱规模较小,问答匹配任务存在检索低效与处理流程复杂的问题.大语言模型为知识图谱问答提供了新方向.探索开源大模型与医疗应急体系智能化结合,构建医疗应急垂直领域的知识图谱,提出一种开源大模型增强知识图谱问答的方法.该方法先生成后检索,利用微调开源大模型生成查询语句,由知识图谱实体、关系组成的词典对生成查询语句替换实体与关系,通过规范查询语句获取知识图谱答案.经过实验测试,该方法在测试集上的逻辑准确率达到84.16%,在自建知识图谱上可行且对其他领域有参考价值.
Intelligent Practice Exploration of Large Language Model in Medical Emergency Knowledge Graph Question-and-Answer Service
At present,the medical emergency response plan field in China is large in scale but not highly intelligent.The knowledge graph question answering system can transfer the operation core from humans to machines,thus achieving intelligence.However,the high-quality knowledge graph scale in this field is relatively small,and the question answering matching task has problems of inefficient retrieval and com-plex processing flow.The big language model provides a new direction for knowledge graph question answering.Explore the integration of open-source big models with intelligent medical emergency systems,construct a knowledge graph in the vertical field of medical emergency,and propose a method for enhancing knowledge graph Q&A with open-source big models.This method involves post production retrieval,uti-lizing fine tuned open-source models to generate query statements.A dictionary composed of knowledge graph entities and relationships replac-es the generated query statements with entities and relationships,and obtains knowledge graph answers through standardized query statements.After experimental testing,the logical accuracy of this method on the test set reached 84.16%,which is feasible on self built knowledge graphs and has reference value for other fields.

large language modelknowledge graph Q&Aintelligenceemergency plan

张子威、武志学、张薇

展开 >

成都信息工程大学 区块链产业学院,四川 成都 610225

大语言模型 知识图谱问答 智能化 应急预案

2024

软件导刊
湖北省信息学会

软件导刊

影响因子:0.524
ISSN:1672-7800
年,卷(期):2024.23(12)