首页|面向多尺度与条形特征的道路提取方法

面向多尺度与条形特征的道路提取方法

扫码查看
在遥感图像道路提取任务中,道路信息常受光照、阴影、遮挡等环境因素干扰,而道路通常呈现为细长带状,因此难以被准确检测.为此,提出一种面向多尺度和条形特征的改进LinkNet模型(MSS-LinkNet),以捕捉不同尺度的上下文信息,并且十分契合道路细长的特点.首先,将多尺度卷积注意力模块作为编码器的基本组成单元,保障模型对多尺度特征和条形特征的提取能力.其次,在网络的中心区域增加改进后的空洞空间金字塔池化模块,增强模型对多尺度信息的解析能力.最后,在解码器部分增加条形池化模块以强化模型对条形信息的解析能力.实验表明,所提模型相较于D-LinkNet而言,在DeepGlobe、Massachusetts数据集上的IOU分别提升2.53%、0.71%,参数量和计算量仅占D-LinkNet的54.15%、79.63%.
Road Extraction Method Oriented by Multi-Scale and Strip Features
In the task of extracting roads from remote sensing images,road information is often affected by environmental factors such as light-ing,shadows,and occlusion,and roads usually appear as slender strips,making it difficult to accurately detect.To this end,an improved LinkNet model(MSS LinkNet)for multi-scale and strip features is proposed to capture contextual information at different scales,which is highly compatible with the slender characteristics of roads.Firstly,the multi-scale convolutional attention module is used as the basic compo-nent unit of the encoder to ensure the model's ability to extract multi-scale and stripe features.Secondly,an improved hollow space pyramid pooling module is added to the central area of the network to enhance the model's ability to parse multi-scale information.Finally,a bar pool-ing module is added to the decoder section to enhance the model's ability to parse bar information.The experiment shows that compared to D-LinkNet,the proposed model has improved IOU by 2.53%and 0.71%on the DeepGlobe and Massachusetts datasets,respectively,while only accounting for 54.15%and 79.63%of D-LinkNet in terms of parameter and computational complexity.

road extractionmulti-scale featurestrip featureattention mechanism

沈国治、余瀚、孙明皓、吴彬、龙显忠

展开 >

南京邮电大学 计算机学院,江苏 南京 210046

百度在线网络技术(北京)有限公司,北京 100096

道路提取 多尺度特征 条形特征 注意力机制

2024

软件导刊
湖北省信息学会

软件导刊

影响因子:0.524
ISSN:1672-7800
年,卷(期):2024.23(12)