首页|基于可变形注意力的时空特征融合超分辨率方法

基于可变形注意力的时空特征融合超分辨率方法

扫码查看
视频超分辨率技术旨在将低分辨率视频转为高分辨率视频.现有基于可变形卷积的特征对齐方式受限于感受野大小,只能在指定的空间位置进行卷积空间的局部偏移,当帧间大规模运动时效果并不好.为此,提出一种基于可变形注意力空间变换的对齐方式在整个特征图进行采样.首先,通过偏移将采样点聚焦于当前处理位置相关的任意位置;其次,模型在全局范围使用递归结构传播融合特征,局部范围利用Transformer提取特征与对齐帧;再次,将对齐后的特征输入具有通道注意力的时空特征融合模块中来补充重建信息;最后,将融合模块的输出随递归网络进行双向传播,以补充相邻帧的时域特征,并通过亚像素卷积4倍上采样得到高分辨率视频.实验表明,该网络以Ba-sicVSR为基线,在REDS4、Vid4数据集上的PSNR指标分别提升0.69 dB和0.43 dB.
A Super Resolution Method for Spatiotemporal Feature Fusion Based on Deformable Attention
Video super-resolution technology aims to convert low resolution videos into high-resolution videos.The existing feature alignment methods based on deformable convolution are limited by the receptive field size,and can only perform local offsets in the convolution space at specified spatial positions.The effect is not good when there is large-scale motion between frames.Therefore,a alignment method based on de-formable attention space transformation is proposed to sample the entire feature map.Firstly,by offsetting,the sampling points are focused on any position related to the current processing location;Secondly,the model uses recursive structures to propagate fused features globally,and Transformer to extract features and align frames locally;Again,input the aligned features into a spatiotemporal feature fusion module with channel attention to supplement the reconstruction information;Finally,the output of the fusion module is propagated bidirectionally with a re-cursive network to supplement the temporal features of adjacent frames,and high-resolution video is obtained through sub-pixel convolution with 4x upsampling.The experiment shows that the network improves the PSNR index by 0.69 dB and 0.43 dB on the REDS4 and Vid4 datas-ets,respectively,with BasicVSR as the baseline.

recurrent neural networkvideo super-resolutiontransformerattention mechanismdeep learning

张墨华、张钰超、刘霁

展开 >

河南财经政法大学 计算机信息与工程学院,河南 郑州 450000

循环神经网络 视频超分 Transformer 注意力机制 深度学习

2024

软件导刊
湖北省信息学会

软件导刊

影响因子:0.524
ISSN:1672-7800
年,卷(期):2024.23(12)