首页|基于图神经网络的异源图像配准方法综述

基于图神经网络的异源图像配准方法综述

扫码查看
为了探讨图神经网络在处理异源图像配准任务中的应用和性能,为后续的图像融合或拼接等任务提供支持,通过综述现有文献,介绍了多种图神经网络模型及其在图像配准领域的应用,并对各种图神经网络架构进行了比较,评估了不同模型的性能.研究发现,图神经网络模型凭借其对图结构信息的有效利用能力及对节点属性信息的精细捕捉,在处理异源图像配准时展现出较传统方法更优的性能.通过对图像配准方法的系统研究,为解决异源图像配准任务面临的配准难度大和精度低的问题提供了新的技术思路.
Overview of Heterogeneous Image Registration Methods Based on Graph Neural Networks
This research aims to explore the application and performance of Graph Neural Network(GNN)in addressing heterogeneous image registration tasks,providing support for subsequent tasks such as image fusion or stitching.By reviewing existing literature,various GNN models and their applications in the field of image registration are introduced,and a comparison of different GNN architectures is conducted to evaluate the performance of each model.The research reveals that GNN models demonstrate superior performance in handling heterogeneous image registration tasks compared to traditional methods,leveraging their ability to effectively utilize graph structural information and finely capture node attribute information.This systematic study of image registration methods offers new technical insights for addressing the challenges of low accuracy and high difficulty in heterogeneous image registration tasks.

heterogeneous imagesimage registrationfeature matchingGNNattention mechanism

黄东福、刘立群

展开 >

甘肃农业大学信息科学技术学院,甘肃 兰州 730070

异源图像 图像配准 特征匹配 图神经网络 注意力机制

2025

软件工程
东北大学 大连东软信息学院

软件工程

影响因子:0.527
ISSN:2096-1472
年,卷(期):2025.28(1)