首页|面向网络论坛的高质量主题发现

面向网络论坛的高质量主题发现

扫码查看
提出了一种通用的高质量主题发现框架.在该框架下,利用特征抽取技术提取内容特征,利用结构特征去发现高质量主题.提出了一种基于遗传算法、禁忌搜索与机器学习的特征选择算法,周来评价被抽取特征的重要性.在腾讯论坛数据集上进行了大量的实验.实验结果表明,该框架能够很好地发现高质量主题.提出的特征抽取算法、特征选择算法以及高质量主题发现框架能够在很多Web2.0领域得到应用,例如,博客、社会网络平台等.
Finding High Quality Threads in Web Forums
This paper presents a general detection framework, and develops a variety of content and structure features to find high quality threads. The feature selection algorithm, which is a combination of genetic algorithm, Tabu search and a machine learning algorithm, is designed to attain a better assessment of key features. In this paper, an experiment is done that focuses on the Tencent Message Boards. The experimental results, obtained from a large scale evaluation of over thousands of real web forum threads and user ratings, demonstrate the feasibility of modeling and detecting high quality threads. The proposed feature extraction methods, feature selection algorithms, and detection framework can be useful for a variety of domains such as Blogs and social network platforms.

Web forumhigh qualityfeature selectionfeature extractionclassification

陈友、程学旗、杨森

展开 >

中国科学院计算技术研究所,北京100190

中国科学院研究生院,北京 100049

网络论坛 高质量 特征选择 特征抽取 分类

国家自然科学基金国家自然科学基金国家高技术研究发展计划(863计划)

60933005609031392007AA01Z438

2011

软件学报
中国科学院软件研究所,中国计算机学会

软件学报

CSTPCDCSCD北大核心EI
影响因子:2.833
ISSN:1000-9825
年,卷(期):2011.22(8)
  • 25
  • 10