首页|3D-IC双层微通道内定流量配给下热-流-固耦合特性的研究

3D-IC双层微通道内定流量配给下热-流-固耦合特性的研究

扫码查看
在三维集成电路技术(three dimensional integrated circuit,3D-IC)迅速发展的过程中,随着其发热功率的不断攀升,散热成为关键问题,而层间微通道技术正是解决这个难题的有效方法.基于真实处理器结构建立一个双层微通道模型,研究了双层通道内流动传热特性及热应力分布,讨论了 5种不同流速配给方案对不同层间温差、压降以及热应力分布的影响.结果表明,在上、下层微通道入口定流速情况下,模型中最大应力集中在通道出口附近的针肋与SiO2层连接处,通过改变层间微通道流速分配,层间出 口处温差降低了 5.24 K,改善了温度均匀性问题,最大热应力较最初方案降低23%.
Study on the coupling characteristics of thermal-fluid-solid under constant flow distribution in 3D-IC double-layer microchannels
In the process of the rapid development of three-dimensional integrated circuit technology(3D-IC),with the continuous rise of the heating power,heat dissipation has become a key problem.Interlayer microchannel technology is an effective way to solve the problem.Based on the real processor structure,a double-layer microchannel model is established,and the flow and heat transfer characteristics and thermal stress distribution in the double-layer channel are studied.The effects of five different velocity rationing schemes on the temperature difference,pressure drop and thermal stress distribution between different layers are discussed.The results show that under the condition of constant velocity at the entrance of the upper and lower microchannel,the maximum stress is concentrated at the connection between the needle rib and the SiO2 layer near the exit of the channel.By changing the velocity distribution of the interlayer microchannel,the temperature difference at the exit of the interlayer is reduced by 5.24 K,and the temperature uniformity is improved.Meanwhile,the maximum thermal stress is 23%lower than that of the original scheme.

double-layer microchannelsTSV pin fintemperature distributionpressure dropthermal stress

秦振、丁斌、巩亮、朱传勇、徐明海

展开 >

中国石油大学(华东)新能源学院,山东青岛 266580

双层微通道 TSV针肋 温度分布 压降 热应力

国家自然科学基金青年科学基金资助项目山东省自然科学基金重大资助项目

51906257ZR2019ZD11

2024

热科学与技术
大连理工大学

热科学与技术

CSTPCD北大核心
影响因子:0.463
ISSN:1671-8097
年,卷(期):2024.23(1)
  • 18