首页|基于弹性网络回归的实际采暖热指标估算方法

基于弹性网络回归的实际采暖热指标估算方法

扫码查看
为满足热电联产企业估算区域热负荷的需求,提出一种使用弹性网络回归模型的估算方法.首先对实际采暖热指标的影响因素进行分析,确定模型的输入参数;然后以西安市123 个小区 2022-2023 年采暖季的实际运行数据为基础建立估算模型,并证明该模型相较于Lasso回归和岭回归模型的拟合优度分别提高了 3.88%和 4.22%;最后从多角度选取西安市部分小区相关数据构成验证集对弹性网络回归模型进行验证.验证结果表明:弹性网络回归模型综合了 Lasso 回归和岭回归的优点,模型的均方根误差和拟合优度分别为1.150 和 0.953,相较于传统模型能在符合热负荷需求的同时降低 4%的能源消耗.说明该方法能准确估算不同参数条件下的实际采暖热指标,可以满足热电联产企业的实际需求.
Estimation method of actual heating heat index based on elastic network regression model
In order to meet the demand of estimating regional heat load for cogeneration enterprises,an estimation method using elastic network regression model is proposed.Firstly,the influencing factors of the actual heating heat index are analyzed to determine the input parameters of the model.Then,based on the actual operation data of 123 residential areas in Xi'an in the heating season from 2022 to 2023,the estimation model is established,and it is proved that the accuracy of the model is higher than that of Lasso regression and ridge regression models.Finally,part of the communities in Xi'an are selected to form a verification set to verify the elastic network regression model.The verification results show that,the elastic network regression model combines the advantages of Lasso regression and ridge regression,and has higher prediction accuracy than the conventional machine learning model.The MAE and goodness of fit of the model are 1.150 and 0.953,respectively,indicating that the method can accurately estimate the actual heating heat index with different parameters,and can meet the actual engineering needs of cogeneration enterprises.

cogenerationactual heating heat indexelastic network regression modelheat load estimation

康敬德、黄嘉驷、乔磊、李杰、孙鹏、贺凯、刘圣冠、尚海军、王钰泽、史耀辉、宋佳怡

展开 >

西安热工研究院有限公司,陕西 西安 710054

华能山东发电有限公司,山东 济南 250014

西安交通大学人居环境与建筑工程学院,陕西 西安 710049

热电联产 实际采暖热指标 弹性网络回归模型 热负荷估算

中国华能集团有限公司总部科技项目

HNKJ21-H60

2024

热力发电
西安热工研究院有限公司,中国电机工程学会

热力发电

CSTPCD北大核心
影响因子:0.765
ISSN:1002-3364
年,卷(期):2024.53(2)
  • 25