首页|风电机组齿轮箱故障预警算法研究及应用

风电机组齿轮箱故障预警算法研究及应用

扫码查看
齿轮箱健康状态直接影响风电机组的发电量,为了在工程实际中尽早实现齿轮箱故障状态的预警,提出一种基于改进狮群优化的K-means聚类算法.将监督机制及考虑非线性权重的正余弦优化算法引入狮群算法实现算法改进,通过改进狮群优化算法对狮王位置的迭代,选择最优解作为K-means算法聚类中心,以解决传统聚类算法对初始聚类中心依赖性强的问题.选择UCI数据对算法进行对比验证,结果表明,基于改进狮群优化的K-means聚类算法的分类准确度和稳定性有较好的提升.将该算法应用于某风电场内4台同一型号机组齿轮箱振动加速度有效值的对比测试,发现该算法的分类中心分布与齿轮箱实际运行状态相吻合,且与标准规定的齿轮箱不同状态所对应的振动能量分布相一致,证明该算法可实现风电机组齿轮箱早期故障预警.
Research and application of wind turbine gearbox fault warning algorithm
The health status of gearbox directly affects the power generation of wind turbine.In order to achieve early warning of gearbox fault status in engineering practice,a K-means clustering algorithm based on improved lion swarm optimization was proposed.The supervision mechanism and the sine and cosine optimization algorithm considering nonlinear weights are introduced into the lion swarm algorithm,and then the optimized lion swarm algorithm is used to iterate the lion king position.By selecting the optimal solution as the clustering center of the K-means algorithm,the problem of strong dependence of conventional clustering algorithms on the selection of initial clustering centers is solved.The UCI data are selected for comparative verification of the algorithm,and the results show that,the K-means clustering algorithm based on the improved lion swarm optimization has achieved a better improvement in classification accuracy and stability.This algorithm is then applied to comparative test of gearbox vibration acceleration effective value for four wind turbines of the same type in a wind farm.It is found that the distribution of classification centers determined by this algorithm is consistent with the actual operating status of the gearbox,and agrees well with the vibration energy distribution corresponding to different states of the gearbox specified in the standard,indicating that the algorithm can realize early fault warning of wind turbine gearbox.

wind turbine unitgearboximproved lion group optimizationclustering algorithmfault warning

刘河生、徐浩、李宁、李林晏、景玮钰、雷航、张瑞刚

展开 >

西安热工研究院有限公司,陕西 西安 710054

中车山东风电有限公司,山东 济南 250000

风电机组 齿轮箱 改进狮群优化 聚类算法 故障预警

西安热工研究院有限公司科技项目

TQ-22-TYK27

2024

热力发电
西安热工研究院有限公司,中国电机工程学会

热力发电

CSTPCD北大核心
影响因子:0.765
ISSN:1002-3364
年,卷(期):2024.53(4)
  • 20