首页|基于VMD-ISSA-GRU组合模型的短期风电功率预测

基于VMD-ISSA-GRU组合模型的短期风电功率预测

扫码查看
为解决风速不确定性和波动性造成风电功率预测精度不高的问题,提出一种基于变分模态分解(VMD)、改进麻雀搜索算法(ISSA)和门控循环神经网络(GRU)的VMD-ISSA-GRU组合模型.首先,利用中心频率法确定采用VMD分解后的模态分量个数,这样有效避免了过分解或者分解不充分.其次引入混沌映射、非线性递减权重以及一个突变策略来改进麻雀搜索算法,用于优化门控循环神经网络,然后对分解得到的各个子序列建立ISSA-GRU预测模型,最后叠加每个子序列的预测值得到最终的预测值.将该模型用于实际风电功率预测,实验结果表明:VMD-ISSA-GRU组合模型的平均绝对误差、平均绝对百分比误差、均方根误差分别为1.211 8MW、1.890 0及1.5916MW;相较于传统的GRU、长短时记忆(LSTM)神经网络、BiLSTM(Bi-directional LSTM)神经网络模型以及其他组合模型在预测精度上都有明显的提升,能很好地解决风电功率预测精度不高的问题.
Short-term wind power prediction based on VMD-ISSA-GRU comprehensive model
In order to solve the problem of low accuracy of wind power prediction caused by wind speed uncertainty and volatility,this paper proposes a VMD-ISSA-GRU combination model based on variational mode decomposition(VMD),improved sparrow search algorithm(ISSA)and gated recurrent neural network(GRU).Firstly,the center frequency method is used to determine the number of modal components after VMD decomposition,which can effectively avoid over-decomposition or insufficient decomposition.Then,chaotic mapping,nonlinear decreasing weights and a mutation strategy are introduced to improve the sparrow search algorithm to optimize the gated recurrent neural network,and then an ISSA-GRU prediction model is established for each decomposed subsequence.Finally,the predicted value of each subseries is superimposed and the final predicted value is obtained.The experimental results show that,the mean absolute error,mean absolute percentage error and root mean square error of the VMD-ISSA-GRU model are 1.211 8,1.890 0 and 1.591 6 MW,respectively.Compared with the conventional GRU,long short-term memory(LSTM)neural network,Bi-directional LSTM(BiLSTM)neural network model and other combination models,the prediction accuracy has been significantly improved,which can solve the problem of low prediction accuracy of wind power.

wind power predictionvariational mode decompositionimproved sparrow search algorithmgated recurrent neural networkhyperparameter

王辉、邹智超、李欣、吴作辉、周珂锐

展开 >

三峡大学电气与新能源学院,湖北 宜昌 443002

智慧能源技术湖北省工程研究中心(三峡大学),湖北 宜昌 443002

风电功率预测 变分模态分解 改进麻雀搜索算法 门控循环神经网络 超参数

国家自然科学基金

52107107

2024

热力发电
西安热工研究院有限公司,中国电机工程学会

热力发电

CSTPCD北大核心
影响因子:0.765
ISSN:1002-3364
年,卷(期):2024.53(5)
  • 1
  • 14