首页|基于可解释性深度学习的太阳辐射强度预测

基于可解释性深度学习的太阳辐射强度预测

扫码查看
准确预测太阳辐射强度(SI)对电力调度和光伏选址至关重要.随着高性能计算机和大容量存储设备的发展,基于数据驱动的深度学习模型在SI预测领域获得广泛关注,然而,深度学习模型的"黑箱"特性在物理解释性上的缺失,限制了其在特定场合的应用可信度.为了在保持预测精度和模型结构不变、不增加计算复杂度的前提下,提升模型的可解释性,构建了一个基于长短时记忆(LSTM)神经网络的模型.其性能比传统神经网络提高了8.07%,并展示出更优的离群点处理能力.通过采用分层相关传播(LRP)算法,从时间和空间2个维度对影响模型输出的因素进行了评分,增强了模型的可解释性.研究结果表明:该模型在确保性能的前提下,具备良好的可解释性,其中历史辐射强度、时间相关特征(如时日周月)、太阳高度角信息(如日出和日落时刻)、云层覆盖度、辐射时长、温度和露点温度等因素是影响太阳辐射强度预测的主要因素.
Prediction of solar irradiation based on interpretable deep learning
Accurately predicting solar irradiation(SI)is crucial for power scheduling and photovoltaic site selection.With the development of high-performance computing and large-capacity storage devices,data-driven deep learning models have gained widespread attentions in the SI prediction domain.However,the lack of physical interpretability due to the"black-box"nature of deep learning models restricts their credibility in specific scenarios.To enhance the interpretability of the model on the premise of maintaining prediction accuracy and keeping the model structure unchanged,and without increasing computational complexity,a model based on long short-term memory(LSTM)neural network is constructed,demonstrating an 8.07%performance improvement over the conventional neural networks and showing superior outlier handling capabilities.By employing layer-wise relevance propagation(LRP)algorithm,factors influencing the model output are scored from both temporal and spatial dimensions,enhancing the model's interpretability.The research results indicate that the model possesses good interpretability under the premise of ensuring performance,with historical solar irradiation,time-related features(such as hour,day,week,month),solar altitude information(such as sunrise and sunset times),cloud cover,radiation time,temperature,and dew point temperature being the main factors influencing SI prediction.

solar irradiation predictiondeep learninginterpretabilityLRP algorithmLSTM

李昂、周雷金、闫群民、贺海育

展开 >

陕西理工大学电气工程学院,陕西 汉中 723000

太阳辐射强度预测 深度学习 可解释性 LRP算法 LSTM

陕西省教育厅重点科学研究项目陕西省教育厅专项科研项目

20JS0185JK1125

2024

热力发电
西安热工研究院有限公司,中国电机工程学会

热力发电

CSTPCD北大核心
影响因子:0.765
ISSN:1002-3364
年,卷(期):2024.53(5)
  • 3