首页|基于DTW-两阶四分位的分布式光伏发电异常数据辨识

基于DTW-两阶四分位的分布式光伏发电异常数据辨识

扫码查看
设备故障、天气环境等因素导致分布式光伏发电系统产生大量异常数据,对其安全稳定运行造成严重影响.为了准确识别和剔除存在的异常数据,提出一种基于动态时间弯曲(DTW)-两阶四分位的分布式光伏发电异常数据辨识方法.首先,通过对比相似辐照度下光伏功率均值实现连续型异常数据识别与剔除,采用基于同时段光伏功率均值剔除异常数据,并考虑光伏发电曲线的波动性,采用基于DTW与欧氏距离的综合曲线相似度判定方法剔除连续型异常数据,更全面地考虑了数据的波动特性,提高了连续型异常数据辨识和剔除效果;其次,提出DTW-两阶四分位异常数据辨识算法,采用一阶变化率和二阶变化率对融合后的数据进行离散型异常数据剔除,有效识别和剔除离散型异常数据;最后,根据异常数据识别和剔除结果判断是否出现故障.实验结果表明:所提算法剔除异常数据后能更好地拟合正常光伏功率数据分布情况,相较于四分位法和3-Sigma算法,所提算法剔除异常数据前后线性相关程度变化分别提高了 58.15%和68.41%,辨识效果更佳.
Abnormal data identification for distributed photovoltaic generation based on DTW and two-stage quartile
Equipment failures,weather conditions and other factors can lead to a large amount of abnormal data in distributed photovoltaic(PV)power generation systems,causing serious effects on their safe and stable operation.In order to accurately identify and remove these abnormal data,a distributed PV power generation abnormal data identification method is proposed based on dynamic time warping(DTW)and two-stage quartile.Firstly,continuous abnormal data identification and elimination are achieved by comparing the mean photovoltaic power under similar irradiance.Abnormal data are eliminated based on the comparison of the mean photovoltaic power at the same period,taking into account the fluctuation of the photovoltaic power generation curve.A comprehensive curve similarity judgment method based on DTW and Euclidean distance is used to consider the fluctuation characteristics of the data more comprehensively,thereby improving the recognition and elimination effect of continuous abnormal data.Secondly,the DTW-Two-Stage Quartile abnormal data identification algorithm is proposed,and the first-order change rate and the second-order change rate are used to eliminate discrete abnormal data from the fused data,effectively identifying and eliminating discrete abnormal data.Finally,it is determined whether a fault has occurred based on the results of abnormal data identification and elimination.Experimental results show that,after the proposed algorithm eliminates abnormal data,it can better fit the distribution of normal photovoltaic power data.Compared with the quartile method and the 3-Sigma algorithm,the linear correlation degree of the proposed algorithm before and after the elimination of abnormal data has increased by 58.15%and 68.41%respectively,with better identification results.

distributed photovoltaicabnormal data identificationdynamic time warpingtwo-stage quartile approach

刘洋、于海东、刘文彬、黄敏、李立生、张世栋

展开 >

国网山东省电力公司电力科学研究院,山东 济南 250003

山东省智能电网技术创新中心,山东 济南 250003

分布式光伏 异常数据辨识 动态时间弯曲 两阶四分位

国家电网有限公司科技项目

520626210014

2024

热力发电
西安热工研究院有限公司,中国电机工程学会

热力发电

CSTPCD北大核心
影响因子:0.765
ISSN:1002-3364
年,卷(期):2024.53(7)
  • 30