首页|基于SPEA2的风光柴储独立微电网多目标容量优化配置

基于SPEA2的风光柴储独立微电网多目标容量优化配置

扫码查看
在电力资源相对匮乏而自然风光资源丰富的孤岛等地区,电力供应的稳定性和成本效益一直是个亟待解决的问题.传统的独立微电网在容量配置时,大多依赖快速非支配排序遗传算法(NSGA-Ⅱ),该算法在处理真实负载的多目标优化问题时,局部搜索能力略显不足.为此,提出了利用改进强度Pareto进化算法(SPEA2)优化风光柴储独立微电网容量配置,以经济性成本、失负荷概率、碳排放作为优化目标,实现更加全面和高效的容量配置.通过导入某孤岛天气与负荷数据,生成风光柴储独立微电网的真实 Pareto 前沿,将 SPEA2和基于指标选择的多目标搜索(IBEA)、NSGA-Ⅱ 3 种算法分析结果进行对比,相较于NSGA-Ⅱ,SPEA2 的反世代距离评价IGD指标提升 46.83%,空间评价方法Spacing指标提升 60.28%,真实Pareto覆盖率CPF指标提升 35.14%,该算法表现出更加出色的性能.最后根据容量优化的结果合理配置各部分参数,共同出力满足负荷需求,为孤岛等电力资源匮乏地区的能源管理提供了新的思路,也为多能源微电网的优化设计提供了有价值的参考.
Multi-objective capacity optimization allocation of wind-PV-diesel-battery stand-alone microgrid based on SPEA2
The stability and cost-effectiveness of power supply has been a pressing issue in areas such as isolated islands where power resources are relatively scarce and natural resources is abundant.Conventional stand-alone microgrids mostly rely on the non-dominated sorting genetic algorithm(NSGA-Ⅱ)for capacity allocation,which has slightly insufficient local search capability when dealing with multi-objective optimization problems with real loads.In order to overcome this limitation,the improved strength Pareto evolutionary algorithm(SPEA2)is used to optimize the capacity allocation of wind-PV-diesel-battery stand-alone microgrid,which takes the economic cost,loss-of-load probability,and carbon emission as the optimization objectives,to achieve a more comprehensive and efficient capacity allocation.By importing the weather and load data of an isolated island and generating the real Pareto frontier of the independent microgrid with wind,PV,diesel and storage,the analysis results of SPEA2 are compared with that of multi-objective search based on indicator selection(IBEA)and NSGA-Ⅱ algorithms.Compared with the NSGA-Ⅱ algorithm,the anti generational distance evaluation IGD index of the SPEA2 increases by 46.83%,the spatial evaluation method Spacing index rises by 60.28%,and the real Pareto coverage CPF index grows by 35.14%,indicating the SPEA2 shows a more excellent performance.Finally,the parameters of each part are reasonably configured according to the results of capacity optimization.It shows that the joint output meets the load demand,which provides a new way of thinking for the energy management of isolated islands and other areas with scarce power resources,and also provides a valuable reference for the optimal design of multi-energy microgrids.

microgridsSPEA2multi-objective optimizationwind-PV-diesel-battery system

李鑫、李俊伟、陈薇、侯谋、贾泽峰、仇坤

展开 >

合肥工业大学电气与自动化工程学院,安徽 合肥 230009

微电网 SPEA2 多目标优化 风光柴储系统

国家自然科学基金项目

62202138

2024

热力发电
西安热工研究院有限公司,中国电机工程学会

热力发电

CSTPCD北大核心
影响因子:0.765
ISSN:1002-3364
年,卷(期):2024.53(8)