首页|考虑碳捕集的风光火储综合能源系统多目标运行优化

考虑碳捕集的风光火储综合能源系统多目标运行优化

扫码查看
针对综合能源系统中碳排放与运行成本冲突的问题,提出了一种考虑碳捕集的风光火储综合能源系统多目标优化调度方法,探讨了碳捕集设备对系统可再生能源消纳、碳排放与运行成本的影响.以某地区典型日的电负荷数据为参考,以改进的IEEE 30节点系统为例,以系统经济性为优化目标求解.结果表明:相比无碳捕集的风光火和风光火储情景,考虑碳捕集的综合能源系统在典型日的运行成本分别下降了 5.19%和 2.86%;碳排放量分别减少了1 159 t和1 013 t;风光消纳率分别提升了5.01%和 2.82%.以系统运行成本和碳排放量最小作为优化目标,采用非支配排序遗传算法Ⅱ(NSGA-Ⅱ)进行多目标寻优,结合线性加权和法得到了不同目标权重下系统优化调度方案:随着碳排放量目标权重的增加,碳排量逐渐减小,系统运行成本增加,单位碳减排成本也会增加;当碳排放量目标权重从 0增至0.5时,系统碳排放量减少了5 159 t,运行成本增加了205 466 元;碳排放量目标权重从 0.4增加到 0.5 时,单位碳减排成本增加最小;碳排放量目标权重在[0.2,0.4]时,减排效果最为明显.该计及碳捕集的多目标优化调度方法可为决策者在权衡系统碳排放和运行经济性时提供参考.
Multi-objective operation optimization of wind-solar-thermal-storage integrated energy system considering carbon capture
Against the conflict between carbon emission and operation cost in integrated energy systems,a multi-objective optimal scheduling method for wind-solar-thermal-storage integrated energy system considering carbon capture is proposed.It explores how carbon capture equipment affects the renewable energy consumption,carbon emissions,and operating costs.Taking the electric load data of a typical day in a specific area as a reference and the improved IEEE 30-bus system as the example,the system economy is optimized.The results show that,compared with the wind-solar-thermal and wind-solar-thermal-storage scenarios without carbon capture,the operating costs of the integrated energy system considering carbon capture reduces by 5.19%and 2.86%respectively on typical days,and the carbon emissions decrease by 1 159 t and 1 013 t,respectively.The consumption rate of wind and solar power generation increases by 5.01%and 2.82%,respectively.Moreover,with the minimum system operation cost and carbon emissions as the optimization objectives,the non-dominated sorting genetic algorithm Ⅱ is used for multi-objective optimization,and the system scheduling optimization scheme under different target weights is obtained by combining with the linear weighted sum method.The study finds that,increasing the weight of carbon emission target reduces the carbon emissions but raises the system operation costs and the cost per unit of carbon emission reduction.Specifically,when the target weight of carbon emissions rises from 0 to 0.5,the carbon emissions decrease by 5 159 t and the operating costs increase by 205 466 yuan.The carbon emission reduction cost per unit increases the least when the target weight shifts from 0.4 to 0.5.The most significant emission reductions occur when the target weight is within[0.2,0.4].The multi-objective optimal scheduling method considering carbon capture proposed above provides a reference for decision makers when weighing system carbon emissions and operating economy.

integrated energy systemoperating optimizationcarbon emissionsmulti-objective optimization

韩逸飞、徐婧、谢典、冯征

展开 >

太原理工大学电气与动力工程学院,山西 太原 030024

中国华能集团有限公司能源研究院,北京 100031

国家电投集团综合智慧能源科技有限公司,北京 100032

综合能源系统 运行优化 碳排放量 多目标优化

国家自然科学基金项目

51906171

2024

热力发电
西安热工研究院有限公司,中国电机工程学会

热力发电

CSTPCD北大核心
影响因子:0.765
ISSN:1002-3364
年,卷(期):2024.53(8)